DOI QR코드

DOI QR Code

토양 경반층 강도가 콩 뿌리신장 및 생육에 미치는 영향

Effect of Soil Compaction Levels and Textures on Soybean (Glycine max L.) Root Elongation and Yield

  • 정기열 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 윤을수 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 박창영 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 황재복 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 최영대 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 전승호 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이황아 (농촌진흥청 국립식량과학원 기능성작물부)
  • 투고 : 2012.03.22
  • 심사 : 2012.06.15
  • 발행 : 2012.06.30

초록

본 연구는 논토양 경반층의 강도가 콩의 뿌리신장에 미치는 영향을 구명코자 미사질식양토 (Silty clay loam), 미사질양토 (Silt loam), 양토 (Loam) 등 3가지 토성을 대상으로 경반층 강도에 따른 콩 뿌리 및 작물 생육반응을 분석하여 논 콩 재배지 논토양의 생산성 향상을 위한 합리적인 토양경반층 관리 방법을 제시코자 수행한 결과 다음과 같은 결론을 얻었다. 토양 경도경도 변화에 따른 콩의 생육은 토양경도가 증가 할수록 경장, 경직경, 주당협수, 100립중, 콩 수량은 감소되는 것으로 나타났으며 토양경도 변화와 밀접한 부의 선형관계를 보였다. 토성에 따른 토양 경반층 강도별 콩 뿌리의 신장 깊이는 세립질인 미사질식양토에 비해 조립질 토양일수록 깊게 신장하였으며 미사질식양토의 경우 1.00 MPa에서 35 cm 까지 신장하는 반면 2.00 MPa에서는 25 cm로 경반층의 강도가 높아질수록 낮아지는 경향을 보였다. 토양 깊이별 뿌리분포는 미사질식양토의 경우 1.00 MPa에서 57%인 반면, 2.00 MPa로 토양경도 값이 높아지며 따라 각각 60%로 대부분의 뿌리가 표토에 분포하였다. 토양 경반층이 형성된 논토양 (평택통)을 대상으로 인위적으로 토양경도를 1.00, 1.25. 1.50, 1.75, 2.00 MPa의 경반층로 조성한 후 콩의 생육반응을 조사한 결과 토양경도 높아질수록 경장, 경직경, 주장협수는 낮아지는 경향을 보였으며, 콩 수량은 2.00 MPa 처리구가 2,236 kg $ha^{-1}$인 반면 1.00 MPa처리구에서 3,056 kg $ha^{-1}$으로 약 25% 증수되는 것으로 나타났다. 토양의 경반층의 투수력은 1.0 MPa에서 9.56 cm인 반면 1.5 MPa 이상에서 급격하게 감소되는 경향을 보였으며, 토양경도가 높아질수록 용적밀도, 고상은 증가하고, 공극률, 함수율, 액상, 기상 등은 반대로 낮아지는 경향을 보였다. 따라서 논 콩 재배지 토양의 토성별 토양경도에 대한 콩 뿌리신장 최소제한 저항값은 토양 깊이별 뿌리의 분포밀도를 기준으로 미사질식양토 1.14 MPa, 미사질양토은 1.3MPa, 양토 1.6 MPa로 나타났다.

Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. This study was carried out evaluate of the effects soil texture and different compaction levels within the soil profile on the soybean root growth and productivity. The soybean plants were grown in $21cm{\o}{\times}30cm$ cylinder pots using three different soil textures (clay, fine loamy and coarse loamy) compacted at different compaction levels (1.25, 1.50, 1.75, and 2.00 MPa). Results revealed that soybean development is more sensitive on penetration resistance, irrespective of soil type. Soybean yield and root weight density significantly decreases with increasing levels of soil compaction in both clayey and fine loamy soils, but not in coarse loamy soil. The highest root weight density was recorded in coarse loamy soils, followed by fine loamy and clay soils, in descending order. The root growth by soil compaction levels started to decline from 1.16, 1.28 and 1.60 MPa for clay, fine loamy and coarse loamy soils. Soybean production in the field experiment decreased about 30% at compacted sub-soils compared to undisturbed soils.

키워드

참고문헌

  1. Batey, T. 1990. Control of compaction on the farm. A personal view. Soil Technol. 3:225-229. https://doi.org/10.1016/0933-3630(90)90002-K
  2. Benghough, A.G. and C.E. Mullins. 1990. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J. Soil Sci. 41:341-358.
  3. Beutler, A.N. and J.F. Centurion. 2004. Soil compaction and fertilization in soybean productivity. Sci. Agric. (Piracicaba, Braz.). 61(6):626-631.
  4. Beutler, A.N. and J.F. Centurion. 2008. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesq. agropec. bras., Brasia. 43(11):1591-1600. https://doi.org/10.1590/S0100-204X2008001100019
  5. Black, C.A.1965. Methods of soil analysis, Part I. Am. Soc. Agron, Medison, USA.
  6. Darcy, H. 1856. Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.
  7. Gupta, S.C. and R.R. Allmaras. 1987. Models to assess the susceptibility of soils to excessive compaction. Adv. Soil Sci. 6:65-100. https://doi.org/10.1007/978-1-4612-4682-4_2
  8. Hallmark, W.B. and S.A. Barber. 1984. Root growth and morphology, nutrient uptake, and nutrient status of early growth of soybeans as affected by soil P and K. Agron. J. 76:209-212. https://doi.org/10.2134/agronj1984.00021962007600020010x
  9. Hamza, M.A. and W.K. Anderson. 2003. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54(3):273-282. https://doi.org/10.1071/AR02102
  10. Hamza, M.A. and W.K. Anderson. 2005. Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil Tillage Res. 82(2):121-145. https://doi.org/10.1016/j.still.2004.08.009
  11. Hans, K. and R. K. Taylor. 1996. Soil compaction problems and solutions. cooperative extension service (AF-115) Kansas State University. http://www.ksre.ksu.edu/library/CRPSL2/AF115.pdf
  12. Ishaq, M., A. Hassan, M. Saeed, M. Ibrahim, and R. Lal. 2001. Subsoil compaction effects on crops in Punjab Pakistan. I. Soil physical properties and crop yield. Soil Tillage Res. 59:57-65. https://doi.org/10.1016/S0167-1987(00)00189-6
  13. Jo, I.S., S.J. Cho, and J.N. Im. 1977. A Study on Penetration of Pea Seedling Taproots as Influenced by strength of Soil. Korean J. Soil Sci. Fert. 10(1):7-12.
  14. Jo, I.S., B.K. Hyun, H.j. Cho, Y.S. Jang, and J.S. Shin. 1997. Effect of soil texture and bulk density on the least-limiting water range. Korean J. Soil Sci. Fert. 44(1):51-55.
  15. Kim, L.Y., H.J. Cho1, S.O. Chung, W.Y. Park, and K.S. Lee. 2006. Determination of tillage depth based on physical properties of soil for rice production in Korea. Key Engineering Materials. 321-323:1229-1232. https://doi.org/10.4028/www.scientific.net/KEM.321-323.1229
  16. Letey, J. 1985. Relationship between soil physical properties and crop production. Adv. Soil Sci. 1:277-294.
  17. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  18. Rosolem, C.A. and M. Takahashi. 1998. Soil compaction and soybean root growth. In: Box, J.E. (Ed.), Root Demographics and their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems. Proceedings of the 5th Symposium of the International Society of Root Research, Clemson, South Carolina, USA, pp. 295-304.
  19. Scrivner, C.L., B.L. Conkling, and P.G. Koenig. 1985. Soil productivity indices and soil properties for farm-field sites in Missouri. Extension Publication. University of Missouri-Columbia, College of Agriculture, Agricultural Experiment Station, Columbia, Missouri.
  20. Silva, A.P. S. Imhoff, and B. Kay. 2004. Plant response to mechanical resistance and air-filled porosity of soils under conventional and no-tillage system. Sci. agric. (Piracicaba, Braz.). 61:451-456. https://doi.org/10.1590/S0103-90162004000400016
  21. Silva, A.P., B.D. Kay, and E. Perfect. 1994. Characterization of the least limiting water range. Soil Sci. Soc. Am. J. 58:1775-1781. https://doi.org/10.2136/sssaj1994.03615995005800060028x
  22. Yun, E.S., K.Y. Jung, K.D. Park, Y.K. Sonn, C.Y. Park, J.B. Hwang, and M.H. Nam. 2011. Compaction characteristics of multi-cropping paddy soils in south-eastern part of Korea. Korean J. Soil Sci. Fert. 44(5):688-695. https://doi.org/10.7745/KJSSF.2011.44.5.688

피인용 문헌

  1. Analysis of Protein Function and Comparison of Protein Expression of Different Environment in Soybean using Proteomics Techniques vol.60, pp.1, 2015, https://doi.org/10.7740/kjcs.2014.60.1.033
  2. Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - vol.43, pp.6, 2015, https://doi.org/10.9715/KILA.2015.43.6.086