DOI QR코드

DOI QR Code

Structural and Thermal Characteristics of a High-Nitrogen Energetic Material: G(AHDNE)

  • Lu, Lei (College of Chemistry and Chemical Engineering, Yan'an University) ;
  • Xu, Kangzhen (Department of Chemical Engineering, Northwest University) ;
  • Zhang, Hang (Department of Chemical Engineering, Northwest University) ;
  • Wang, Gang (College of Chemistry and Chemical Engineering, Yan'an University) ;
  • Huang, Jie (Department of Chemical Engineering, Northwest University) ;
  • Wang, Bozhou (Xi'an Modern Chemistry Research Institute) ;
  • Zhao, Fengqi (Xi'an Modern Chemistry Research Institute)
  • Received : 2012.01.13
  • Accepted : 2012.04.20
  • Published : 2012.07.20

Abstract

A high-nitrogen energetic salt, 1-amino-1-hydrazino-2,2-dinitroethylene guanidine salt [G(AHDNE)], was synthesized by reacting of 1-amino-1-hydrazino-2,2-dinitroethylene (AHDNE) and guanidine hydrochloride in sodium hydroxide aqueous solution. The theoretical investigation on G(AHDNE) was carried out by B3LYP/$6-311+G^*$ method. The thermal behaviors of G(AHDNE) were studied with DSC and TG-DTG methods, and the result presents an intense exothermic decomposition process. The enthalpy, apparent activation energy and pre-exponential constant of the process are $-1060J\;g^{-1}$, $148.7kJ\;mol^{-1}$ and $10^{15.90}s^{-1}$, respectively. The critical temperature of thermal explosion of G(AHDNE) is $152.63^{\circ}C$. The specific heat capacity of G(AHDNE) was studied with micro-DSC method and theoretical calculation method, and the molar heat capacity is $314.69J\;mol^{-1}K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of G(AHDNE) was calculated to be a certain value between 60-72 s. The detonation velocity and detonation pressure were also estimated. G(AHDNE) presents good performances.

Keywords

References

  1. Rajappa, S. Tetrahedron 1981, 37, 1453. https://doi.org/10.1016/S0040-4020(01)92085-X
  2. Herve, G.; Jacob, G.; Latypov, N. Tetrahedron 2005, 61, 6743. https://doi.org/10.1016/j.tet.2005.05.010
  3. Herve, G.; Jacob, G.; Latypov, N. Tetrahedron 2007, 63, 953. https://doi.org/10.1016/j.tet.2006.11.031
  4. Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525. https://doi.org/10.1016/S0040-4020(98)00673-5
  5. Bemm, U.; Ötmark, H. Acta Crystallogr. C 1998, 54, 1997. https://doi.org/10.1107/S0108270198007987
  6. Bellamy, A. J.; Goede, P.; Sandberg, C.; Latypov, N. V. The Proceedings of the33th International Annual Conference ICT; Karlsruke: Germany, 2002.
  7. Trzcinski,W. A.; Cudzilo, S.; Chylek, Z.; Szymanczyk, L. J. Hazard. Mater. 2006, 157, 605.
  8. Gao, H. X.; Zhao F. Q.; Hu, R. Z.; Pan, Q.; Wang, B. Z.; Yang, X. W.; Gao, Y.; Gao, S. L.; Shi, Q. Z. Chin. J. Chem. 2006, 24, 177. https://doi.org/10.1002/cjoc.200690034
  9. Fan, X. Z.; Li, J. Z.; Liu, Z. R. J. Phys. Chem. A 2007, 111, 13291. https://doi.org/10.1021/jp075889l
  10. Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Cao, Z. H.; Ma, H. X.; Hu, R. Z.; Gao, H. X.; Huang, J. Acta Chim. Sinica 2007, 65, 2827.
  11. Majano, G.; Mintova, S.; Bein, T.; Klapötke, T. M. J. Phys. Chem. C 2007, 111, 6694. https://doi.org/10.1021/jp068863n
  12. Anniyappan, M.; Talawar, M. B.; Gore, G. M.; Venugopalan, S.; Gandhe, B. R. J. Hazard. Mater. 2006, 137, 812. https://doi.org/10.1016/j.jhazmat.2006.03.034
  13. Sizova, E. V.; Sizov,V. V.; Tselinskii, I. V. Rus. J. Org. Chem. 2007, 43, 1232. https://doi.org/10.1134/S107042800708026X
  14. Garg, S.; Gao, H. X.; Joo,Y. H.; Parrish, D. A.; Huang, Y.; Shreeve, J. M. J. Am. Chem. Soc. 2010, 132, 8888. https://doi.org/10.1021/ja103935q
  15. Garg, S.; Gao, H. X.; Parrish, D. A.; Shreeve, J. M. Inorg. Chem. 2011, 50, 390. https://doi.org/10.1021/ic102136r
  16. Xu, K. Z.; Song, J. R.; Yang, X.; Chang,C. R.; Yang, X. K.; Ma, H. X.; Huang, J.; Zhao, F. Q. J. Mole. Struct. 2008, 891, 340. https://doi.org/10.1016/j.molstruc.2008.04.004
  17. Chang, C. R.; Xu, K. Z.; Song, J. R.; Yan, B.; Ma, H. X.; Gao, H. X.; Zhao, F. Q. Acta Chim. Sinica 2008, 66, 1399.
  18. Xu, K. Z.; Zhao, F. Q.; Song, J. R.; Chang, C. R.; Li, M.; Wang, Y. Y.; Hu, R. Z. Chin. J. Chem. 2009, 27, 665. https://doi.org/10.1002/cjoc.200990109
  19. Xu, K. Z.; Chang, C. R.; Song, J. R.; Zhao, F. Q.; Ma, H. X.; Lv, X. Q.; Hu, R. Z. Chin. J. Chem. 2008, 26, 495. https://doi.org/10.1002/cjoc.200890093
  20. She, J. N.; Xu, K. Z.; Zhang, H.; Huang, J.; Zhao, F. Q.; Song, J. R. Acta Chim. Sinica 2009, 67, 2645.
  21. Xu, K. Z.; Wang, F.; Ren, Y. H.; Li, W. H.; Zhao, F. Q.; Chang, C. R.; Song, J. R. Chin. J. Chem. 2010, 28, 583. https://doi.org/10.1002/cjoc.201090116
  22. Xu, K. Z.; Zhao, F. Q.; Wang, F.; Wang, H.; Luo, J. A.; Hu, R. Z. Chin. J. Chem. Phys. 2010, 23, 335. https://doi.org/10.1088/1674-0068/23/03/335-341
  23. Xu, K. Z.; Zuo, X. G.; Zhang, H.; Yan, B.; Huang, J.; Ma, H. X.; Wang, B. Z.; Zhao, F. Q. J. Therm. Anal. Calorim. 2011, DOI 10.1007/s10973-011-1894-x
  24. Gao, H. X.; Joo, Y. H.; Parrish, D. A.; Vo, T.; Shreeve, J. M. Chem. Eur. J. 2011, 17, 4613. https://doi.org/10.1002/chem.201002858
  25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B., et al. Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA 2003.
  26. Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Ma, H. X.; Gao, H. X.; Chang, C. R.; Ren, Y. H.; Hu, R. Z. J. Hazard. Mater. 2008, 158, 333. https://doi.org/10.1016/j.jhazmat.2008.01.077
  27. Kissinger, H. E. Anal. Chem. 1957, 29, 1702. https://doi.org/10.1021/ac60131a045
  28. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. https://doi.org/10.1246/bcsj.38.1881
  29. Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, 2008. (in Chinese)
  30. Smith, L. C. Thermochim. Acta 1975, 13, 1. https://doi.org/10.1016/0040-6031(75)80060-8
  31. Xu, K. Z.; Zhao, F. Q.; Song, J. R.; Ren, X. L.; Gao, H. X.; Xu, S. Y.; Hu, R. Z. Bull. Korean Chem. Soc. 2009, 30, 2259. https://doi.org/10.5012/bkcs.2009.30.10.2259
  32. Ma, H. X.; Yan, B.; Li, Z. N.; Guan, Y. L.; Song, J. R.; Xu, K. Z.; Hu, R. Z. J. Hazard. Mater. 2009, 169, 1068. https://doi.org/10.1016/j.jhazmat.2009.04.057
  33. Xu, K. Z.; Chen, Y. S.; Wang, M.; Luo, J. A.; Song, J. R.; Zhao, F. Q.; Hu, R. Z. J. Therm. Anal. Calorim. 2011, 105, 293. https://doi.org/10.1007/s10973-010-1244-4
  34. Vyzovkin, S.; Burnham, A. K.; Criado, J. M.; Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. Thermochim. Acta 2011, 520, 1. https://doi.org/10.1016/j.tca.2011.03.034
  35. Zhou, S. Base of Explosion Chemistry; Beijing Institute of Technology Press: 2005. (in Chinese)
  36. Ou, Y. X. Explosives; Beijing Institute of Technology Press: 2006. (in Chinese)
  37. Ma, H. X.; Song, J. R.; Zhao, F. Q.; Hu, R. Z.; Xiao, H. M. J. Phys. Chem. A 2007, 111, 8642. https://doi.org/10.1021/jp073092o
  38. Chen, H. X.; Chen, S. S.; Li, L. J.; Jiao, Q. Z.; Wei, T. Y.; Jin, S. H. J. Hazard. Mater. 2010, 175, 569. https://doi.org/10.1016/j.jhazmat.2009.10.043
  39. Jaidann, M.; Roy, S.; Hakima, A. R.; Lussier, L. S. J. Hazard. Mater. 2010, 176, 65.

Cited by

  1. (DNANT= Dinitroacetonitrile) vol.118, pp.7, 2014, https://doi.org/10.1021/jp411445h
  2. Synthesis and Thermal behaviors of 1, 8-Dihydroxy-4, 5-Dinitroanthraquinone Nickel Salt vol.269, pp.None, 2012, https://doi.org/10.1088/1757-899x/269/1/012058
  3. High-Pressure Studies of Hydrogen-Bonded Energetic Material 3,6-Dihydrazino-s-tetrazine Using DFT vol.3, pp.8, 2012, https://doi.org/10.1021/acsomega.8b00806