DOI QR코드

DOI QR Code

High Yielding [18F]Fluorination Method by Fine Control of the Base

  • Lee, Sang-Ju (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Oh, Seung-Jun (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chi, Dae-Yoon (Department of Chemistry, Sogang University) ;
  • Moon, Dae-Hyuk (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ryu, Jin-Sook (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2012.01.25
  • Accepted : 2012.03.26
  • Published : 2012.07.20

Abstract

New [$^{18}F$]F-fluorination methods using a minimized amount of precursor has been developed by controlling the base concentration. In the first method, pre-conditioning of the anion exchange cartridge with $K_2CO_3$ solution or water was carried out. The trapped [$^{18}F$]fluoride on the cartridge was then eluted by KOMs or KOTf solution. [$^{18}F$]F-Fluorination could be performed without additional base. In the second method, the QMA cartridge was preconditioned with KOMs solutions. Trapped [$^{18}F$]fluoride on the QMA was then eluted with KOMs and additional base, such as KOH, $K_2CO_3$, and $KHCO_3$, was added into the reaction vessel. Method 1 showed a [$^{18}F$]F-incorporation yield of 20.9% for [$^{18}F$]FLT synthesis with 5 mg of precursor. Unlike method 1, a [$^{18}F$]F-incorporation yield of 91.4% was achieved from the same amount of precursor in method 2.

Keywords

References

  1. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501-1516. https://doi.org/10.1021/cr0782426
  2. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem. Int. Ed. 2008, 47, 8998-9033. https://doi.org/10.1002/anie.200800222
  3. Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2853-2873.
  4. Moon, B. S.; Park, J. H.; Lee, H. J.; Kim, J. S.; Kil, H. S.; Lee, B.S.; Chi, D. Y.; Lee, B. C.; Kim, Y. K.; Kim, S. E. Appl. Radiat. Isot. 2010, 68, 2279-2284. https://doi.org/10.1016/j.apradiso.2010.06.016
  5. Lee, B. S.; Seo, J. W.; Lee, S. J.; Oh, S. J.; Chi, D. Y. Bull. Korean Chem. Soc. 2011, 32, 71-76. https://doi.org/10.5012/bkcs.2011.32.1.71
  6. Kim, D. W.; Ahn, D. S.; Oh, Y. H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. Am. Chem. Soc. 2006, 128, 16394-16397. https://doi.org/10.1021/ja0646895
  7. Lee, S. J.; Oh, S. J.; Chi, D. Y.; Lee, B. S.; Ryu, J. S.; Moon, D. H. J. Labelled Compd. Radiopharm. 2008, 51, 80-82. https://doi.org/10.1002/jlcr.1478
  8. Lee, S. J.; Oh, S. J.; Chi, D. Y.; Kil, H. S.; Kim, E. N.; Ryu, J. S.; Moon, D. H. Eur. J. Nucl. Med. Mol. Imaging. 2007, 34, 1406- 1409. https://doi.org/10.1007/s00259-007-0391-8
  9. Suehiro, M.; Vallabhajosula, S.; Goldsmith, S. J.; Ballon, D. J. Appl. Radiat. Isot. 2007, 65, 1350-1358. https://doi.org/10.1016/j.apradiso.2007.07.013
  10. Nishijima, K.; Kuge, Y.; Tsukamoto, E.; Seki, K.; Ohkura, K.; Magata, Y.; Tanaka, A.; Nagatsu, K.; Tamaki, N. Appl. Radiat. Isot. 2002, 57, 43-49. https://doi.org/10.1016/S0969-8043(02)00070-2
  11. Huang, B. X.; Channing, M. A.; Plascjak, P. S.; Kiesewetter, D. O.; Der, M.; Ma, Y.; Eckelman, W. C. Nucl. Med. Biol. 2003, 30, 785-790. https://doi.org/10.1016/S0969-8051(03)00083-0
  12. Hayashi, K.; Furutsuka, K.; Takei, M.; Muto, M.; Nakao, R.; Aki, H.; Suzuki, K.; Fukumura, T. Appl. Radiat. Isot. 2011, 69, 1007- 1013. https://doi.org/10.1016/j.apradiso.2011.02.025
  13. Lee, S. J.; Oh, S. J.; Moon, W. Y.; Choi, M. S.; Kim, J. S.; Chi, D. Y.; Moon, D. H.; Ryu, J. S. Nucl. Med. Biol. 2011, 38, 593-597. https://doi.org/10.1016/j.nucmedbio.2010.11.012

Cited by

  1. F]FMISO) vol.56, pp.14, 2013, https://doi.org/10.1002/jlcr.3115
  2. F]Fluorination of Boronic Acids vol.17, pp.23, 2015, https://doi.org/10.1021/acs.orglett.5b02875
  3. Full automatic synthesis of [18F]THK-5351 for tau protein PET imaging in Alzheimer’s disease patients: 1 year experience vol.314, pp.3, 2017, https://doi.org/10.1007/s10967-017-5573-7
  4. 18F-labelling innovations and their potential for clinical application vol.6, pp.3, 2018, https://doi.org/10.1007/s40336-018-0280-0
  5. Fluorine-18 patents (2009-2015). Part 2: new radiochemistry vol.5, pp.5, 2016, https://doi.org/10.4155/ppa-2016-0028
  6. Development of Customized [ 18 F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-00110-1
  7. Optimization of the Synthesis of 18 F‐D 2 ‐Deprenyl With Mild 18 F ‐Fluorination and Minimum Precursor Input for PET Imaging of Neuro vol.41, pp.8, 2012, https://doi.org/10.1002/bkcs.12071
  8. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18 F-fluorination chemistry vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-61845-y
  9. Automated synthesis of the 16α-[18F]fluoroestradiol ([18F]FES): minimization of precursor amount and resulting benefits vol.108, pp.12, 2020, https://doi.org/10.1515/ract-2020-0058
  10. The Non-Anhydrous, Minimally Basic Synthesis of the Dopamine D2 Agonist [18F]MCL-524 vol.3, pp.3, 2012, https://doi.org/10.3390/chemistry3030075
  11. Aliphatic 18 F‐Radiofluorination: Recent Advances in the Labeling of Base‐Sensitive Substrates** vol.16, pp.17, 2012, https://doi.org/10.1002/cmdc.202100303
  12. Insights into Elution of Anion Exchange Cartridges: Opening the Path toward Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers vol.4, pp.5, 2012, https://doi.org/10.1021/acsptsci.1c00133
  13. Radiolabeled Silicon-Rhodamines as Bimodal PET/SPECT-NIR Imaging Agents vol.14, pp.11, 2012, https://doi.org/10.3390/ph14111155