A Stereoselective Synthesis of C4-C18 Fragment of Arenicolide A

Kwangkuk Lee, Jung Lyul Lee, and Duck-Hyung Lee*
Department of Chemistry, Sogang University, Mapo-gu, Seoul 121-742, Korea. "E-mail: dhlee@sogang.ac.kr Received May 12, 2012, Accepted May 16, 2012

Key Words : Arenicolide A, Stereoselective synthesis, Brown asymmetric methoxyallylation, Regioselective Stille coupling

Arenicolide A (1) and B (2), isolated from the large-scale fermentation of the S. arenicola strain CNR-005 in 2007, displayed cytotoxicity toward the human colon adenocarcinoma cell line HCT-116 $\left(\mathrm{IC}_{50}=30 \mu \mathrm{~g} / \mathrm{mL}\right)$ and three cell lines in the National Cancer Institute. ${ }^{1}$ Arenicolide A (1) is a 26 -ring macrolide with three conjugated dienes, nine chiral centers, and one side chain, and its molecular formula is consistent with the high-resolution ESI-FTMS data of the $[\mathrm{M}+\mathrm{Na}]^{+}$peak at m / z 827.4916. Regarding the synthesis of arenicolide A (1), our group published the synthesis of C26C36 fragment of arenicolide A (1) in $2009^{2 a}$ and Miyashita group reported another synthesis of C25-C36 fragment in $2010{ }^{2 b}$

Although its relative stereochemical relationships were proposed by various spectroscopic and chemical degradation methods, chiral centers at C12, C30, and C31 were not elucidated clearly by W. Fenical in 2007. ${ }^{1}$ If we assume that C6-C12 and C16-C22 sequences should be repeated, then we can assign the chiral center at C12 to be (S)-configuration. We report herein the stereoselective synthesis of the plausible C4-C18 skeleton 3 of arenicolide A (1) based on this assumption.
Retrosynthesis is summarized in Figure 1. The target molecule 3 would be prepared by transition-metal mediated cross-coupling ${ }^{3}$ of vinylstanne 4 and 1,1-dibromide 5 . Brown asymmetric methoxyallylation of aldehyde $\mathbf{6}$ would provide the intermediate 4, and 1,1-dibromide 5 should be derived from Wittig reaction of aldehyde 7 and phosphonium salt 8 . ${ }^{4}$
The commercially available D-mannitol (9) was converted to the aldehyde $\mathbf{1 0}$ by acetal protection of two 1,2 -diol moieties and subsequent oxidative cleavage of the remaining 1,2-diol in 46% two-step yield. ${ }^{5}$ (Scheme 1) Although there are many methods available to convert the aldehyde $\mathbf{1 0}$ into syn-alcohol 11, ${ }^{6}$ we decided to utilize asymmetric reduction strategy. Addition of allylmagensium bromide to aldehyde 10 and PCC oxidation provided the β, γ-unsaturated ketone

Figure 1. Retrosynthesis of C4-C18 skeleton 3.

Scheme 1. Synthesis of aldehyde 7. (a) Cyclohexanone, $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, $\mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{DMSO}, 24 \mathrm{hr}$. (b) $\mathrm{NaIO}_{4}, \mathrm{Bu}_{4} \mathrm{NBr}$ (cat.), $\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, 2$ $\mathrm{hr}, 46 \%$ (over 2 steps). (c) AllylMgBr, THF, $0^{\circ} \mathrm{C}$ to rt, $15 \mathrm{hr}, 88 \%$. (d) $\mathrm{PCC}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $12 \mathrm{hr}, 80 \%$ (e) K-selectride, THF, $-78{ }^{\circ} \mathrm{C}, 4 \mathrm{hr}, 82 \%$. (f) NaH , MeI, THF, $0^{\circ} \mathrm{C}, 8 \mathrm{hr}, 95 \%$. (g) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=5: 1,-78^{\circ} \mathrm{C}$, then DMS, pH 7 buffer, 61%.
in 70% two-step yield, and Felkin-type reduction of $\beta, \gamma-$ unsaturated ketone using K-selectride was carried out to afford the syn-alcohol $\mathbf{1 1}$ in 82% yield. ${ }^{6 d}$ Allylic alcohol $\mathbf{1 1}$ was further converted to the aldehyde 7 via methylation of the C16 hydroxy group in 95% yield and ozonolysis of terminal double bond in 61% yield.

Benzyl protected intermediate $\mathbf{1 2}$ was prepared by Wittig reaction of aldehyde 7 and phosphonium salt $\mathbf{8}^{4}$ in 55% yield (Scheme 2). The acetal protecting group of $\mathbf{1 2}$ was removed

Scheme 2. Synthesis of 1,1-dibromo alkene 5. (a) Phosphonium salt 8, n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 3 \mathrm{hr}, 55 \%$. (b) TFA, MeOH/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 54 \%$. (c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 82 \%$. (d) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$ (g) $\mathrm{MeOH}, 3$ days, rt, 99%. (e) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}, 86 \%$. (f) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, 87\%.

Scheme 3. Synthesis of target molecule 3. (a) $n-\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, Toluene, reflux, $5 \mathrm{hr}, 51 \%$. (b) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{hr}, 99 \%$. (c) Allyl methyl ether, sec-BuLi, BF_{3}-OEt, (-)Ipc 2 BOMe, THF, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{hr}, 71 \%$. (d) 1,1-Dibromo alkene 5, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, (2-fury) $)_{3} \mathrm{P}$, toluene, $100^{\circ} \mathrm{C}, 24 \mathrm{hr}, 52 \%$. (e) TBDPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{rt}, 92 \%$.
by TFA in aqueous methanol in 54% yield, and the resulting 1,2-diol was treated with TBSOTf and 2,6-lutidine to afford the bis-TBS product in 82% yield. The primary alcohol 13 was synthesized by hydrogenation of the internal double bond and hydrogenolysis of the benzyl protecting group using Pd / C in MeOH under H_{2} atmosphere for 3 days in 99% yield. Sequentially, Swern oxidation and conversion of aldehyde functionality to 1,1-dibromo alkene moiety by Corey-Fuchs protocol ${ }^{7}$ provided the intermediate 5 in 75% two steps yield.
The synthesis of target molecule $\mathbf{3}$ was shown in Scheme 3. The commercially available propargyl alcohol (14) was converted to α, β-unsaturated aldehyde 6 by hydrostannylation reaction of terminal alkyne using $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in 51% yield and subsequent Swern oxidation in 99% yield. Brown asymmetric methoxyallylation ${ }^{8}$ to aldehyde 6 using
$(-)-\mathrm{Ipc}_{2} \mathrm{BOMe}$, sec -BuLi and allyl methyl ether furnished vinylstanne 4 in 71% yield, and the construction of C9-C10 bond was completed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$-mediated regioselective Stille coupling ${ }^{3}$ of the stanne 4 and 1,1-dibromo alkene 5. Finally, the synthesis of target $\mathbf{3}^{9}$ was completed by protection of TBDPS group at C7 in 92\% yield.

In summary, the plausible C4-C18 building block 3 was prepared in total 18 steps (15 linear-steps, 1.3% overall yield from 9). The key steps are Brown asymmetric methoxyallylation, Wittig reaction, and regioselective Stille coupling.

Acknowledgments. This research was assisted financially by National Research Foundation of Korea (NRF-20080058780). The instrument facilities of the Organic Chemistry Research Center (OCRC) in Sogang University were also helpful.

References

1. Williams, P. G.; Miller, E. D.; Asolkar, R. N.; Jesen, R. R.; Fenical, W. J. Org. Chem. 2007, 72, 5025-5034.
2. (a) Lee, J. L.; Han, S.-J.; Lee, D.-H. Bull. Kor. Chem. Soc. 2009, 30, 1443-1444. (b) Nagumo, S.; Nakano, T.; Hata, K.; Mizukami, M.; Miyashita, M. Org. Lett. 2010, 12, 908-911.
3. Shen, W.; Wang, L. J. Org. Chem. 1999, 64, 8873-8879.
4. Commandeur, M.; Commandeur, C.; Cossy, J. Org. Lett. 2011, 13, 6018-6021.
5. (a) Yin, H.; Franck, R. W.; Chen, S. L.; Quigley, G. J.; Todaro, L. J. Org. Chem. 1992, 57, 644-651. (b) Hiroya, K.; Ichihashi, Y.; Furutono, A.; Inamoto, K.; Sakamoto, T.; Doi, T. J. Org. Chem. 2009, 74, 6623-6630.
6. (a) Grover, P. T.; Roush, W. R. J. Org. Chem. 1995, 60, 38063813. (b) Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D.; Roush, W. R. J. Org. Chem. 1990, 55, 4117-4126. (c) Willis, C.; Bellosta, V.; BouzBouz, S.; Cossy, J. J. Org. Chem. 2002, 67, 1982-1992. (d) Dhotare, B.; Salaskar, A.; Chattopadhyay, A. Synthesis 2003, 16, 2571-2575.
7. Fuchs, P. L.; Corey, E. J. Tetrahedron Lett. 1972, 13, 3769-3772.
8. Jadhav, P. K.; Bhat, K. S.; Brown, H. C. J. Am. Chem. Soc. 1988, 110, 1535-1538.
9. $[\alpha]_{\mathrm{D}}=-7.36\left(\mathrm{c}=0.0125 \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.70-7.62 (m, 4H), 7.42-7.31 (m, 6H), 5.95-5.92 (m, 2H), 5.70$5.64(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.51-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.14(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 6 \mathrm{H}) 1.08(\mathrm{~s}, 9 \mathrm{H})$, $1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88$ (s, 9H), 0.08-0.04 (m, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 145.29,141.36,139.83$, $139.45,139.04,137.30,136.33,135.05,134.97,132.90,132.84$, $128.72,124.17,90.94,87.40,82.63,79.78,79.49,69.61,63.95$, 62.08 , 42.03, 41.61, 35.02, 32.44, 32.39, 31.41, 31.33, 29.40, $25.05,24.81,23.77,23.55,1.19,0.558,0.09,0.00 \mathrm{ppm}$; IR (neat) 2949.5, 2924.3, 2853.5, 1740.7, 1470.2, 1460.9, 1360.2, 1252.1, 1107.4, 833.85, 776.16, $701.53 \mathrm{~cm}^{-1}$; HRMS: m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{77} \mathrm{BrO}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$897.4139, found: 897.4142.
