DOI QR코드

DOI QR Code

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C. (St. Joseph's College, Barathidasan University) ;
  • Vanitha, M. (Department of Chemical Engineering, A.C.Tech, Campus, Anna University) ;
  • Balasubramanian, N. (Department of Chemical Engineering, A.C.Tech, Campus, Anna University)
  • Received : 2012.03.05
  • Accepted : 2012.03.29
  • Published : 2012.03.30

Abstract

Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.

Keywords

References

  1. D. Chatterjee and S. Dasgupta, J.Photochem. Photobiol. C: Photochem. Rev., 6,186 (2005). https://doi.org/10.1016/j.jphotochemrev.2005.09.001
  2. M.C. Venceslau, S. Tom and J.J. Simon, Environ. Technol., 15, 917(1994). https://doi.org/10.1080/09593339409385500
  3. J. Peller, O.Wiest, and K. V Prashant, J. Environ. Sci. Technol., 37, 1926 (2003). https://doi.org/10.1021/es0261630
  4. A. Dae-Hee, C. Won-Seok and Y. Tai, Process Biochem., 34, 429(1999). https://doi.org/10.1016/S0032-9592(98)00111-3
  5. J.H. Carey, Water Pollut.Res. J. Can., 27, 1-21(1992).
  6. C.Singaravadivel, Photocatalytic treatment of organic pollutant present in the wastewater, Thesis, Bharathidasan University (2004).
  7. R. W. Matthews, Photochemical Conversion and Storage of Solar Energy, E. Pelizetti and M. Schivallo ,Eds., Kluwer Academic Publishers (1991).
  8. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol C: Photochem., Rev 1-21 (2000).
  9. D.M. Blake, Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air, National Technical Information Service, Springfield (1999).
  10. U. Stafford, K.A. Gray, P.V. Kamat, Hetero Chem Rev., 3, 77(1996). https://doi.org/10.1002/(SICI)1234-985X(199606)3:2<77::AID-HCR49>3.0.CO;2-M
  11. M.R. Hoffmann, S.C. Martin, W. Choi, D.W. Bahnemann, Chem. Rev., 95, 69(1995). https://doi.org/10.1021/cr00033a004
  12. O. Legrini, E. Oliveros, A.M. Braun., Chem. Rev., 93, 671(1993). https://doi.org/10.1021/cr00018a003
  13. B. Ahmet, Y. Ayfer, L. Doris, N. Nese and K. Antonius, Dyes and Pigments., 58, 93(2003). https://doi.org/10.1016/S0143-7208(03)00047-0
  14. S. Lidia, J. Claudia and N.K. Santosh, Water Res., 35, 2129 (2001). https://doi.org/10.1016/S0043-1354(00)00487-5
  15. Stanislaw L., Monika S. and Renata Z, J. Biotechnol., 89,175 (2001). https://doi.org/10.1016/S0168-1656(01)00296-6
  16. M. Tzitzi, D.V Vayenas and G. Lyberatos, Water Sci. Technol., 29, 151 (1994).
  17. H. Gerischer and A. Heller, J. Electrochem. Sci., 139, 113 (1992). https://doi.org/10.1149/1.2069154
  18. H. Gerischer and A. Heller, J. Phys. Chem., 95, 5261 (1991). https://doi.org/10.1021/j100166a063
  19. G.N. Scharauzer and T.D. Guth, J. Am. Chem. Soc., 99 (22), 7189 (1977). https://doi.org/10.1021/ja00464a015
  20. H.V. Damme, W.K. Hall, J. Am. Chem. Soc., 101, 4373 (1979). https://doi.org/10.1021/ja00509a055
  21. J.M. Lehn, J.P. Sauvage and R. Ziessel, Nov. J. Chem., 4 , 623(1980).
  22. S. Sato and J.M. White, Chem. Phy. Lett., Catalysts, 72, 83(1980). https://doi.org/10.1016/0009-2614(80)80246-6
  23. T. Kawai and I. Sakata, Chem. Phy. Lett., 72, 87(1980). https://doi.org/10.1016/0009-2614(80)80247-8
  24. N. Serpone, R. Terzian, D. Lawless, P. Kennepohl, G. Sauve, Photchem. Photobiol. A: Chem, 73, 11(1993). https://doi.org/10.1016/1010-6030(93)80027-7
  25. Alamddine and M.M. El Jamal, J. Univ. Chem. Technol., Metallurgy, 44, 2, 127(2009).
  26. C.M.A. Brett, A.M.O. Brett (1993), Electrochemistry: Principles, Methods And Applications, Oxford University Press, Oxford (1993).
  27. Z. Zainal, C. Y. Lee, M.Hussein, A. Kassim, N. A.Yusof , J. Photochem. Photobiol. A: Chem., 172, 316 (2005). https://doi.org/10.1016/j.jphotochem.2004.12.021
  28. K.I. Okamoto, Y. Yamamoto, H. Tanaka and M. Tanaka, Bull.Chem. Soc. Jpn., 58, 2015 (1985). https://doi.org/10.1246/bcsj.58.2015

Cited by

  1. Multi-Objective Optimization of Indigo Carmine Removal by an Electrocoagulation/GAC Coupling Process in a Batch Reactor vol.49, pp.6, 2014, https://doi.org/10.1080/01496395.2013.871292