DOI QR코드

DOI QR Code

Spatial Operation Allocation Scheme over Common Query Regions for Distributed Spatial Data Stream Processing

분산 공간 데이터 스트림 처리에서 질의 영역의 겹침을 고려한 공간 연산 배치 기법

  • Chung, Weon-Il (Dept. of Information Security Engineering, Hoseo University)
  • Received : 2012.04.04
  • Accepted : 2012.06.07
  • Published : 2012.06.30

Abstract

According to increasing of various location-based services, distributed data stream processing techniques have been widely studied to provide high scalability and availability. In previous researches, in order to balance the load of distributed nodes, the geographic characteristics of spatial data stream are not considered. For this reason, distributed operations for adjacent spatial regions increases the overall system load. We propose a operation allocation scheme considering the characteristics of spatial operations to effectively processing spatial data stream in distributed computing environments. The proposed method presents the efficient share maximizing approach that preferentially distributes spatial operations sharing the common query regions to the same node in order to separate the adjacent spatial operations on overlapped regions.

위치를 기반으로 하는 서비스가 다양해짐에 따라 고가용성과 고확장성을 제공하기 위한 분산 데이터 스트림 처리 기법에 대한 연구가 널리 수행되고 있다. 기존 연구는 분산된 노드들에서 부하의 균형을 유지하기 위해 공간 데이터 스트림의 지리적인 특성을 고려하지 않고 있어 공간적으로 인접한 연산을 수행함에 있어 전체 시스템의 부하를 증가시키고 있다. 본 논문에서는 분산 환경의 공간 데이터 스트림을 처리하기 위해 공간 영역의 겹침을 고려한 연산배치 기법을 제안한다. 제안 기법에서는 인접한 공간 영역을 대상으로 하는 연산을 효율적으로 분리하기 위해 질의 영역이 겹치는 부분의 연산을 우선적으로 동일 노드에 분배하여 중복 영역에 대한 공유의 최대화를 보장한다.

Keywords

References

  1. S. Prabhakar, et al., "Query indexing and velocity constrained indexing: scalable techniques for continuous queries on moving objects", IEEE Transactions on Computers, Vol. 51, No. 10, pp. 1124-1140, 2002. https://doi.org/10.1109/TC.2002.1039840
  2. Chi-Min Park, et al., "Design and Implementation of a Spatial DSMS based on STREAM", Proc. of KSIS Fall Conference, pp. 131-136, 2006.
  3. B. Gedik, et al., "MobiEyes: Distributed processing of continuously moving queries on moving objects in a mobile system", Proc. of the International Conference on Extending Database Technology, 2004.
  4. C. S. Jensen, et al., "Query and update efficient B+-tree based indexing of moving objects", Proc. of the International Conference on Very Large Data Bases, pp. 768-779, 2004.
  5. H. Hu, et al., "A generic framework for monitoring continuous spatial queries over moving objects", Proc. of the ACM International Conference on Management of Data, SIGMOD, 2005.
  6. G. S. Iwerks, et al., "Continuous K-nearest neighbor queries for continuously moving points with updates", Proc. of the International Conference on Very Large Data Bases, 2003.
  7. C. S. Jensen, et al., "Query and update efficient B+-tree based indexing of moving objects", Proc. of the ACM international Conference on Very Large Data Bases, 2004.
  8. M. A. Shah, et al., "Highly-available, fault-tolerant, parallel dataflows", Proc. of the ACM SIGMOD, 2004.
  9. Y. Xing, et al., "Dynamic Load Distribution in the Borealis Stream Processor", Proc. of IEEE ICDE Conference, 2005.
  10. N. Tatbul, et al., "Load management and high availability in the borealis dis-tributed stream processing engine", Technical Report, ETH Zurich, 2006.
  11. Min-ho Seo, et al., "Resource Sharing Method to Reduce Duplicate Operation Cost of Multiple Spatial Aggregates in u-GIS Environment", Proc. of the 31th KIPS Spring Conference, pp. 344-347, 2009.
  12. A. Guttman, "R-tree: A dynamic index structure for spatial searching", Proc. of International Conference on Management of Data, ACM SIGMOD, 1984.
  13. W. Chung, et al., "GeoSensor Data Stream Processing System for u-GIS Computing", The Journal of KSIS , Vol. 11, No. 1, pp. 9-16, 2009
  14. "Tiger/Line Shapefiles", www.census.gov/geo/www/tiger/tgrshp2007/tgrshp2007.html, 2007.