DOI QR코드

DOI QR Code

Effect of Annealing on the Electrical Property and Water Permeability of ZTO/GZO Double-layered TCO Films Deposited by DC, RF Magnetron Co-sputtering

DC, RF 마그네트론 코스퍼터링법으로 증착한 ZTO/GZO 투명전도성막의 열처리 조건이 박막의 물성에 미치는 영향

  • Oh, Sung-Hoon (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Sae-Won (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Gun-Hwan (Korea Institute of Materials Science (KIMS)) ;
  • Jung, Woo-Seok (Electronics and Telecommunications Research Institute (ETRI)) ;
  • Song, Pung-Keun (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2012.05.23
  • Accepted : 2012.06.28
  • Published : 2012.06.30

Abstract

ZTO/GZO double layered films were prepared on unheated non-alkali glass substrates. ZTO films were deposited by RF/DC hybrid magnetron co-sputtering using ZnO (RF) target and $SnO_2$ (DC) targets, and then GZO films were deposited by DC magnetron sputtering using an GZO ($Ga_2O_3$:5.57 wt%) target. These films were post-annealed at temperature of 200, $300^{\circ}C$ in air and vacuum ambient for 30 min. In the case of post-annealing in air, ZTO/GZO double layer showed relatively low resistivity change, compared to GZO single layer. Furthermore, ZTO/GZO double layer revealed low WVTR, compared to GZO single layer. Therefore, it can be confirmed that ZTO film doing a role with barrier for water or oxygen diffusion.

Keywords

References

  1. Y. H. Jung, E. S. Lee, K. H. Kim, J. Kor. Inst. Surf. Eng., 38 (2005) 150.
  2. Z. C. Jin, I. Harmberg, C. G. Granqvist, Thin Solid Films, 64 (1988) 381.
  3. J. W. Moon, D. W. Kim, J. Kor. Inst. Surf. Eng., 40 (2007) 117. https://doi.org/10.5695/JKISE.2007.40.3.117
  4. D. R. Sahu, J.-L. Huang, Microelectron. J., 38 (2007) 299. https://doi.org/10.1016/j.mejo.2007.01.012
  5. Y. S. Park, S. H. Lee, P. K. Song, J. Kor. Inst. Surf. Eng., 40 (2007) 107. https://doi.org/10.5695/JKISE.2007.40.3.107
  6. S. J. Henley, M. N. R. Ashfold, D. Cherns, Surf. Coat. Technol., 177-178 (2004) 271. https://doi.org/10.1016/j.surfcoat.2003.09.005
  7. C. S. Hong, H. H. Park, J. Moon, H. H. Park, Thin Solid Films, 515(3) (2006) 957. https://doi.org/10.1016/j.tsf.2006.07.055
  8. H. D Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suha, and Y. S Kima, J. Cryst. Growth, 277 (2005) 352. https://doi.org/10.1016/j.jcrysgro.2005.01.061
  9. Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, K. Tominaga, Vacuum, 74 (2004) 607. https://doi.org/10.1016/j.vacuum.2004.01.033
  10. T. Minami, S. Takata, H. Sato, and H. Sonohara, J. Vac. Sci. Technol. A, 13(3) (1995) 1095.
  11. J. Montero, C. Guilln, J. Herrero, Thin Solid Films, 519 (2011) 7564. https://doi.org/10.1016/j.tsf.2010.12.103
  12. S. I. Kim, T. D. Jung, P. K. Song, Thin Solid Films, 518 (2010) 3085. https://doi.org/10.1016/j.tsf.2009.08.017
  13. S. H. Park, J. B. Park, P. K. Song, Curr. Appl. Phys., 10 (2010) S488. https://doi.org/10.1016/j.cap.2010.02.036
  14. J. K. Sheu, K. W. Shu. M. L. Lee, G. C. Chi, Electrochemical Society, 154 (2007) 521. https://doi.org/10.1149/1.2721760
  15. S. Y. Ryu, Appl. Phys. Lett., 92 (2008) 023306. https://doi.org/10.1063/1.2835044
  16. X. W. Sun, L. D. Wang, H. S. Kwok, Thin Solid Films, 360 (2000) 75. https://doi.org/10.1016/S0040-6090(99)01077-9
  17. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Crystal Growth, 130 (1993) 269. https://doi.org/10.1016/0022-0248(93)90861-P
  18. S. E. Park, S. H. Park, J. Lue, P. K. Song, J. Kor. Inst. Surf. Eng., 41 (2008) 142. https://doi.org/10.5695/JKISE.2008.41.4.142
  19. S. Y. Oh, E. K. Kim, T. Y. Lee, J. T. Song. J. Electron. Mater. Eng., (2007) 776.