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ABSTRACT. When it comes to Lorentz symmetry violation, there are generally two approaches to 
studying noncommutative field theory: 1) conventional fields are equivalent to noncommutative 
fields; however, symmetry groups are larger. 2) The symmetry group is the same as conventional 
standard model’s symmetry group; but fields here are written based on the Seiberg–Witten map. 
Here by adopting the first approach, we aim to connect Lorentz violation coefficients with 
noncommutative parameters and compare the results with the second approach’s results. Through 
the experimental values obtained for the Lorentz-violating parameters, we obtain a limit of 
noncommutative symmetry. 

1. INTRODUCTION 

All the physical interactions remain invariant under Lorentz transformations and charge-
parity-time (CPT) inversion. These two transformations correlate through the CPT theorem, 
which mooted by Bell,  Lüders, and Pauli in 1954 and claims that theories that have 
Lorentz symmetry absolutely have CPT symmetry as well, and theories in which CPT 
symmetry is broken contain Lorentz violation; however, the reverse is not always true [1]. 
Lorentz symmetry is divided into two types: observer Lorentz transformation and particle 
Lorentz transformation [2]. Lorentz symmetry occurs when these two transformations 
remain invariant. The CPT symmetry is a combination of charge conjugation (C), parity (P) 
and time reversal (T). Laws of physics remain unchanged under the CPT operator. Many 
theories and experiments have been carried out to investigate the correctness of these 
symmetries. Nevertheless, in recent years, some considerable theoretical evidences of 
Lorentz and CPT symmetry violation have been observed in the Planck scale domain [3]. 

Based on these evidences, the quantization of gravity is impossible without breaking 
Lorentz symmetry. All the theories that are proposed in this regard like the string theory and 
noncommutative field theory have Lorentz symmetry violation. The standard-model 
extension (SME) is the best framework to describe theories containing Lorentz and CPT 
symmetry violation. In this model, all the interaction terms added to the standard model 
have observer Lorentz symmetry but break particle Lorentz symmetry [2, 4]. 
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The most general form of the Lagrangian normalized in the quantum-electrodynamic 
version of SME (QEDE) is written as: 

    

   QEDE Fermion Photon   
          (1.1) 

where the interaction of Fermions: 

   

1

2Fermion i D M
    



         (1.2) 

in which   and M  are extended as: 

   5c d   
       

          (1.3) 

   
5

1

2
M m a b H  

        
         (1.4) 

Also, the photon term is given by: 

   
 1 1 1

4 4 2Photon F AFF F k F F k A F


    
    

      (1.5) 
where a , b , c , d , H , AFk , Fk  are constant and real. These coefficients are 

considered as background tensor fields and responsible for the spontaneous breaking of 
Lorentz symmetry. Moreover, they are sensitive to special tests and, in fact, control Lorentz 
and CPT violation terms [4, 28]. 

Tests that are sensitive to Lorentz and CPT symmetries include particle accelerators, low-
energy atomic experiments, and astrophysics. Lorentz violation coefficients are limited 
through these tests [5] such as comparison of atomic clocks on the earth and in the space [6, 
7], investigation of hydrogen and antihydrogen atomic spectra [8], cosmology calculations 
[9], observation of neutrino oscillations [10], and so forth. 

Here first, we study the noncommutative field theory (NFT) as a theory containing 
Lorentz symmetry violation and introduce the proposed approaches to expressing the NFT. 
Then, we find the relationship between Lorentz violation coefficients and noncommutative 
(NC) parameters through the first approach and compare its results with the results of the 
second approach. Finally, we obtain some limits comparable to others’ works for 
noncommutative symmetry. 

2. NONCOMMUTATIVE FIELD THEORY 

In recent years, many efforts have been made to study the NFT and its phenomenological 
results [11]. The idea of noncommutative space-time seriously began from the problem of 
quantizing an open string in the presence of background field [11]. 

In comparison to the NFT’s counterpart in the commutative space, there are new 
interactions here that are of great significance in particle and cosmological physics and can 
open a window to new physics. In the framework of noncommutative space-time, the 
coordinates are defined as operators and their commutation equation is written as: 

   ˆ ˆ,x x i                        (2.1) 
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where the NC parameter (  ) is constant, antisymmetric, and real. As (2.1) shows,   

has square-length dimension. Therefore, it will correlate with the energy scale (s) through 
21/ NC

   . The constant NC parameter causes a preferable direction in the space-time 

and eliminates the isotropy of space-time. This matter motivates us to interconnect 
noncommutative theories with SME. In other words, the NFT can be a subcategory of SME. 
The NC parameter serves as background fields in the SME and leads to the breaking of 
particle Lorentz symmetry [12]. 

The noncommutative space is constructed by substituting noncommutative functions for 
commutative functions and converting the normal product into star product in the 
commutative field theory. Considering (2.1), the star production is expressed as: 

   
     1

exp
2 x y

f g x i f x g y x y 
               (2.2) 

which is known as Weyl–Moyal correspondence. The NFT is not easily constructed using 
this correspondence. The electric charge quantization is one the problems. The group (1)U  

in noncommutative QED can only describe particles with charge 0 and 1  [13]. To solve 
this problem, two different approaches have been proposed to construct the NFT with gauge 
symmetry: 1) NFT without using Seiberg–Witten map [14] and NFT by using Seiberg–
Witten map [15]. 

In the first approach, we consider NC fields to be conventional and enlarge the theory’s 
symmetry group. For instance, the standard-model group is considered (3) (2) (1)U U U  . 
Finally, it is reduced to the conventional-standard-model group by two spontaneous 
symmetry breakings; consequently, two extra Higgs particles are obtained. It suggests that 
there are more particles in this theory than the standard model [14]. 

In the second approach, the symmetry group is considered the same as the standard-model 
symmetry group, (3) (2) (1)SU SU U  ; however, the fields are a function of NC 
parameter and determined by Seiberg–Witten map [15]. According to this map, the fields are 
extended to every arbitrary order of NC parameter [16]. Furthermore, the number of 
particles here is the same as that of the corresponding theory in the commutative space. 

Physicist have made many efforts to study the NFT and its phenomenological aspects 
through these two approaches and achieved different and interesting results. As an example 
in the noncommutative standard model, considering Seiberg–Witten map, there is not any 
vertex factor for the interaction between left-handed neutrino and photon whereas in the 
second approach for such an interaction, the vertex factor is the same for both right-handed 
and left-handed neutrinos [17]. In the noncommutative approach, there are only Majorana 
neutrinos because of Seiberg–Witten map whereas there are Dirac neutrinos in addition to 
Majorana neutrinos in the opposite approach [18]. 

Now, we want to consider another difference between these two approaches in Lorentz 
symmetry violation. 

3. NFT AND LORENTZ SYMMETRY VIOLATION WITHOUT SEIBERG–WITTEN MAP 

Here, through the first approach in NFT, we get the relationship between Lorentz 
violation coefficients and NC parameters. This paper is based on only the quantum-
electrodynamic part of the standard model. To do so, we consider NC fields to be 
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conventional and develop our gauge symmetry group to a larger symmetry group (1)U . 
This group operates in the Weyl–Moyal space constructed based on star product. Since this 
group has the same form as (1)U  [14], its Lagrangian is considered conventional and the 
normal product is converted into star product. 

   
2

1 1ˆ ˆ ˆˆ ˆ ˆ ˆ
2 4NC i D m F F

q
 

          


        (3.1) 

The noncommutative photon and Fermion fields are defined respectively as follows: 

   ˆ ˆ ˆ ˆˆ ,F A A i A A       
                 (3.2) 

   ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆD D D           


         (3.3) 

The definition of covariant derivation is also obtained as usual and just by substituting 
star product for normal product. 

   ˆˆ ˆ ˆ ˆD iA                  (3.4) 

The NFT is considered as a gauge theory. It means that the gauge symmetry remains 
unchanged under the following transformations [19]: 

      1ˆ ˆF U x F U x 
    

          1 1ˆ ˆA U x A U x iU x U x  
       

    ˆ ˆU x              (3.5) 

The unitary transformation is written as: 

   

1
( ) 1

2
iU x e i        

 

   
1( ) ( ) 1U x U x             (3.6) 

Now, the NC fields are applied to the Lagrangian (3.1). Because of the integration over 
the whole space and antisymmetric NC parameter (see Appendix A), the correction terms 
that have Lorentz symmetry violation are obtained as: 

   
 1 1

4 4
LIV
NC QED iq F D iq A D   

            
 

 
 

   

1 1

2 8
q F F F q F F F   

     
        (3.7) 

where QED  denotes the similar Lagrangian in the commutative field theory. The 

correction terms of the photon part in both proposed approaches are renormalizable on the 
single-ring surface in the noncommutative space [19]. Equation (3.7) shows that the 
noncommutative effects vanish in the neutral particles. 

Now, selecting a background electromagnetic field, we extend our investigations to more 
physical cases. To calculate the noncommutative effective Lagrangian, we apply the 

transformations extA A A     (where extA  is the external field) and 
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F f F     (where f  is the background constant field corresponding to extA  in 

the commutation space and F  represents small dynamic fluctuations) to the Lagrangian 

(3.7). Maintaining terms up to the second order with respect to F, (3.7) is rewritten as: 

   1 1 1

4 4 2
ext ext

NC QED iq f D iq A D q A A     
                    

 
 

 
1 1 1 1

2 2 8 4
q f F F q f F F q f F F q f F F       

             
(3.8) 

Comparing (3.8) with the Lagrangian written in QEDE, from the SME below: 

 1 1 1 1

2 4 2 4LIV Fi D m F F ic D k F F      
    

            
 



             (3.9) 
we obtain the Lorentz violation coefficients as follows: 

   
 1 1

2 2
extc qf q A 

         
        (3.10) 

   
  4 2Fk q f q f q f

     
      

      (3.11) 

   
 1

2
ext exta q A A

    
         (3.12) 

The electric charge that appears in (3.9) will not change, it means effq q . 

Similarly to what we done in the first approach, the Lorentz violation coefficients have 
been calculated in the second approach. In this state, the NC fields are extended as: 

   
 1ˆ

2
A A A A F
        

 

   

1
ˆ

2
A
      

                (3.13) 
By inserting them into (3.1), the corrections obtained in this approach are as the form 

below: 
1 1 1 1

2 4 8 4
LIV
NC i D m F F iq F D iq F D     

                 
  


 

   

1 1 1

4 2 8
mq F q F F F q F F F    

         
     (3.14) 

The same as the first approach, this Lagrangian has gauge invariance. Similarly, by 
applying the background field and comparing with (3.9), the following Lorentz violation 
coefficients are achieved [12]: 

   

1

2
c qf 
   

                (3.15) 
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 

     1 1

2 4

Fk qf

qf qf


  

   

 

       

 

       
     (3.16) 

In (3.9), the electric charge that appears in the covariant derivation in this approach is 

replaced by the effective electric charge, (1 (1/ 4) )effq qf q
  . 

Comparing these two approaches, it can be seen in the determination of Lorentz violation 
coefficients that in the first approach and without extending NC fields, the Lorentz violation 
coefficients c  and Fk  correlate the NC parameter,  , and background fields through 

(3.10) and (3.11), respectively. Moreover, in this approach, there is the Lorentz violation 
coefficient a  as well (see (3.12)) whereas in the second approach, the noncommutative 

corrections containing Lorentz violation appear in c  and Fk  through extending the NC 

fields according to the Seiberg–Witten map. These coefficients are shown by (3.15) and 
(3.16). 

 

4. NONCOMMUTATIVE SCALE 

Many studies have been carried out in the framework of noncommutative effects. Some 
of them satisfactorily predicted the NC scale [19]. Here we investigate the NC scale 
resulting from Lorentz symmetry violation. As mentioned before, many tests that contain 
Lorentz and CPT symmetry violation are conducted in the SME framework. Thanks to 
advances in laboratory equipment, such tests give robust and more acceptable limits on 
Lorentz violation coefficients. Because both Lorentz violation coefficients have CPT 
symmetry, we only take tests containing Lorentz symmetry violation into consideration. The 
cosmic microwave background (CMB) on which many studies have been performed is 
characterized as a natural source of photons and electromagnetic waves. Based on these 

investigations, the Lorentz-violating parameter Fk  is obtained of the order of 3110  [20]. 

Considering the relationship between this coefficient and the NC parameter based on both 
noncommutative approaches Fk q B , the NC scale is approximately of the order of 200 

GeV. In comparison to the investigations conducted in the past, this limit increases the order 
of NC effects by two. 

However, in the Fermion part of the QEDE, there are many limits put on c  and its 

combinations [5]. In this regard, atomic clock comparison can be noted. In such experiments, 
the hyperfine frequencies of atoms and pure ions are precisely measured. With empirical 

data obtained from the atom comparison 9 /Be H  under a 0.8-T magnetic field, the 

Lorentz violation coefficient is estimated 2510 GeVJc   [21]. Considering (3.10) and 

(3.15), the NC scale is of the order of 22 TeV, which is of the same order as the result in ref. 
[12]. 

New limits of each Lorentz violation coefficient are extended in the different parts of the 
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SME, which are collected in a new version in 2010 [5]. In Table 1, different limits of NC 
scale are calculated for the results obtained for c  and its combinations in various 

physical systems. 
Table 2 provides the results obtained for the NC scale in the special systems sensitive to 

photon properties. 

TABLE 1. Noncommutative scale with regards to c  in the Fermion part. 

c  Empirical data   NC  
Magnetic 

field B  
Physical system

1

2
ec XY  158 10   1 2(10 GeV)   0.1 GeV  1.7T  

Optical 

amplifiers [22]

1

2
ec XY  162.1 10  1 2(5 10 GeV)   0.5 GeV  T  

Optical and 

microwave 

amplifiers [23]

 

 

 

0.83

0.51

0.22

TX

TY

TZ

c

c

c





 114 10  5 2(4 10 GeV)   24 10 MeV 
 mT  

Transition 

1 2S S  [24] 

P
Qc  220.3 10 GeV  

2(7 20 GeV)  7 20GeV  20μT 0.2mT  Cs fusion [7] 

Pc  251.8 10 GeV  
2 2(8 10 4 10 GeV)   28 10 4 10 GeV   20μT 0.2mT  Cs fusion [7] 

,

N
Jc

J X Y


 2510 GeV  23 2(21 10 GeV)  22 TeV


 0.81T  

9 /Be H  

comparison 

[21] 

,N N
Zc c   2710 GeV  2(77 GeV)  77 GeV


 mG  

/ & /Hg Hg Ne Ne

 comparison 

[21] 

 

5. CONCLUSION 

As mentioned, both approaches exist in the construction of noncommutation that each of 
them leads to different and interesting results in the different parts of the standard model. In 
this paper, we tried to investigate these two approaches’ results in Lorentz symmetry 
violation. Accordingly, we considered the first approach to construct the NFT (without using 
the Seiberg–Witten map) and obtained its corrections. This Lagrangian that contained 
Lorentz violation was compared with the Lagrangian of SME in the QED part and the 
relationship between the Lorentz violation coefficients and NC parameter was found. Here 
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we saw that by considering NC fields as conventional, the Lorentz violation 
coefficients c , Fk , and a  correlate with the NC parameter and background 

electromagnetic field through (3.10), (3.11), and (3.12) respectively. In comparison to the 
work done in ref. [12] and adopting the second noncommutative approach (using the 
Seiberg–Witten map), the Lorentz violation coefficients include c  and Fk , which are 

shown in (3.15) and (3.16). 
Moreover, using Fk  in both approaches and considering CMB, we got the NC scale up 

to the order 200NC GeV  . Then, we could extend the NC scale to the order 22 TeV 

through c . In this case, the empirical values of c  (in the comparison of transition 

frequencies 9 /Be H ) were used. The calculated NC scales in Tables 1 and 2 indicate that 

the limit of the NC parameter obtained from the astrophysical system [26] leads to better 
results. 

TABLE 2. Noncommutative scale with regards to Fk  in the photon part. 

Fk  
Empirical 

data 
  NC  

Magnetic 

field B  
Physical system 

Fk  2810  2(3 10 GeV)  30 GeV


10 μG  
Cosmic sources 

[4] 

1,2,...,10

ak

a 
 322 10  3 2(10 GeV)  100 GeV


μG  Astrophysics [25]

ak  (some 

values of a) 
372 10  5 2(2 10 GeV)  200 TeV


μG  Astrophysics [26]

4
20( )Bk  3117 10  2 2(2 10 GeV)  200 GeV


10 μG  CMB [20] 

( )

,

XJ
ek

J Y Z


 170.31 10  2 2(3 10 GeV)  0.03 GeV


0.6 G  

Revolving optical 

amplifier [27] 

 

 

APPENDIX A 

The density calculation of the noncommutative Lagrangian without using Seiberg–Witten 
map and calculating Lorentz violation coefficients is provided here. We begin from the 
Lagrangian in noncommutative QED: 
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2

1 1ˆ ˆ ˆˆ ˆ ˆ ˆ
2 4NC i D m F F

q
 

          


        (A.1) 

By assuming NC fields as conventional, considering the definition of star product in (2.2) 
up to the first order of noncommutation, and using (3.3) and (3.4), the integration of the first 
term of (A.1) over the whole space is obtained as: 

   
 

   
4

1 1

2 2
1

2

Fermion
NC

i i
S d x

A i A

 
 

  
   

    

     

       
    
  

             (A.2) 

Considering the definition of covariant derivation in the simplified commutative space of 
(A.2), we will have: 

     1 1

2 2
i D i A  

          


        (A.3) 

The other Fermion term in (A.1): 

     4 41
ˆ ˆ

2
m d x m im d x

            
                (A.4) 

will be similar to the commutative conventional interaction since the NC parameter is 
antisymmetric. Therefore, the remaining terms in the Fermion part will be: 

      41 1

2 2
Fermion
NCS i D m i A d x  

               
 


         (A.5) 

The term of the noncommutative photon part is: 

   4 4
2 2

1 1ˆ ˆ ˆ ˆ
4 4

photon
NCS F F d x F F d x

q q
 

 
                   (A.6) 

in which the star product was used as 4 4ˆ ˆˆ ˆ.f gd x f gd x   . 

Now, considering the definition of photon fields in noncommutation based on (3.2), the 
action is obtained according to the commutative conventional fields in this part. 

   
    4

2

1
2

4
photon
NCS F F F A A d x

q
 

         
            (A.7) 

Hence, the final action of noncommutation without extending fields will be: 

   

  

  
4

2

1

2
1

2

NC QED

i A

S S d x
A A F

q

 
  

 
   

   



       
   
  

        (A.8) 

where QEDS  represents the action in the commutative space. Now, because we want to 

compare this Lagrangian with the Lagrangian related to Lorentz violation, the photon field 
is defined as F A A         and the correction terms resulted from noncommutation 

in (A.8) are rewritten as: 
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   1 1

4 2
i A D A A  

            


 

   
  

     
4

2

1

2

F F F A A F
d x

q A A F A A F

 
     

 
       

             
            (A.9) 

Since the fields are removed at infinity based on the divergence theorem and we maintain 
the Lorentz violation terms, the last four terms in (A.9) are transformed as: 

   
  2

1

2
F F F A F F

q
  

       
       (A.10) 

Considering the establishment of: 

   
 4F F F A F F   

      
             (A.11) 

Equation (A.10) can be shown as: 

   
2 2

1 1

2 8
F F F F F F

q q
   

     
             (A.12) 

By selecting A qA  , the charge coupling is added to the problem and the final 

Lagrangian is expressed as: 

   
 1 1

2 4NC QED q A A iq F D   
            


 

 

   
 1 1 1

4 2 8
iq A D q F F F q F F F     

             


       (A.13) 
To obtain the effective Lagrangian under a background electromagnetic field, we apply 

the transformations extA A A     and F f F     to (A.13) and maintain the 

terms up to the second order of F. 

   

 

 

1 1

2 4
1 1

4 2
1 1 1

2 2 8

ext
NC QED

ext

q A A iq f D

iq A D q f F F

q f F F q f F F q f F F

   
    

   
    

     
     

     

   

  

   

  

  





 

          (A.14) 

Considering the property of Lorentz indexes and because the electromagnetic field tensor 
is antisymmetric, (A.14) is rewritten as: 



THE RELATIONSHIP BETWEEN NONCOMMUTATIVE AND LORENTZ-VIOLATING PARAMETERS 215

  

  

1

4
1

1 8
1 12

2 4

ext
NC QED

ext

iq f A D

q f q f F F
q A A F F

q f q f

   
    

  
    

   
  

   

   

  
  

 

   

       
  
  


 

   (A.15) 

Now, by comparing (A.15) with the SME Lagrangian (3.9), the Lorentz violation 
coefficients are obtained as follows: 

   
 1

2
extc q f A 

          
 

   
 1

2
ext exta q A A

    
 

   
  4 2Fk q f q f q f

      
      

      (A.16) 
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