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NEW CONSTRUCTION OF THE EAGON-NORTHCOTT

COMPLEX

Oh-Jin Kang and Joohyung Kim∗

Abstract. The authors [6] introduced the concept of a complete
matrix of grade g > 3 to describe a structure theorem for complete
intersections of grade g > 3. We show that a complete matrix can
be used to construct the Eagon-Northcott complex [7]. Moreover,
we prove that it is the minimal free resolution F of a class of deter-
minantal ideals of n× (n+ 2) matrices X = (xij) such that entries
of each row of X = (xij) form a regular sequence and the second
differential map of F is a matrix f defined by the complete matrices
of grade n+ 2.

1. Introduction

Let k be a field containing the field Q of rational numbers and let
R = k[xij|1 ≤ i ≤ m, 1 ≤ j ≤ n] be the polynomial ring over a field k
with indeterminates xij. Eagon and Northcott [7] defined a free complex
from a matrix over a commutative ring with identity which is a general-
ization of the standard Koszul complex. As an application of it, they con-
structed the minimal free resolution of R/It(X), where t = min(m,n).
Also Buchsbaum and Rim [4] separately constructed the minimal free
resolution of the class of the determinantal ideals. Buchsbaum [5] used
the multilinear algebra to give other version of the Eagon and Northcott
complex. Buchsbaum and Eisenbud [2] noted that the Eagon-Northcott
and Buchsbaum-Rim complexes are constructed by the multilinear alge-
bra, that is, the complexes are described in terms of tensor products of
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exterior, symmetric and divided power algebras. On the other hand, us-
ing the representation theory of the general linear groups, Lascoux [12],
Pragacz and Weyman [13], and Roberts [14] constructed the minimal
free resolution of R/It(X) for any m,n, t, where R contains the field Q
of the rational numbers. Akin, Buchsbaum and Weyman [1] developed
the characteristic free representation theory of the general linear groups
and constructed the minimal free resolution of R/It(X) over R = Z in
the case of t = min(m,n) − 1. Roberts [14] proved that there exists a
minimal free resolution of R/It(X) over R = Z if and only if the Betti
numbers of R/It(X) is independent of the characteristic of the base
field. Hashimoto and Kurano [10] used this proof to show that there
exists a minimal free resolution of R/It(X) over R = Z in the case of
m = n = t + 2. Hishimoto [8, 9] also extended this result to the case of
t = min(m,n) − 2 and proved that there is no minimal free resolution
of R/It(X) over R = Z in the case of 2 ≤ t ≤ min(m,n) − 3. Recently,
Kang and Ko [11] introduced a complete matrix of grade 4 to describe
a structure theorem for the complete intersections of grade 4 and Choi,
Kang and Ko [6] extended this to a structure theorem for the complete
intersections of grade g > 3. In this paper, we introduce a matrix f
defined by complete matrices f(i) of grade n+ 2,

f =
[
f(1)t −f(2)t · · · (−1)i+1f(i) · · · (−1)n+1f(n)t

]
and define the ideal Dn+1(f) associated with f, which is generated by
the maximal minors of the n× (n+2) matrix D(f) = (xij), where xij is
the (n+ 1)st root of the jth (n+ 1)× (n+ 1) diagonal submatrix Sij of
the complete matrix f(i) of grade n+ 2.

The main purpose of this paper is to construct a minimal free resolu-
tion F of a class of the determinantal ideals generated by the maximal
minors of an n × (n + 2) matrix D(f), such that entries of each row of
D(f) form a regular sequence and the second differential map of F is a
matrix f defined by the complete matrices of grade n+ 2. This method
gives us a case of constructing the minimal free resolution of a class of
the determinantal ideals of an n × (n + 2) matrix. Among classes of
determinantal ideals generated by the maximal minors of p× q matrices
Y = (yij) with p < q and indeterminates yij, except the class mentioned
above it is not easy to find one of them which has the minimal free reso-
lution such that the second differential map of it has a matrix defined by
complete matrices of grade q and each row of Y forms a regular sequence
of length q.
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2. A minimal free resolution of a class of determinantal ideals

Let k be a field containing the field Q of rational numbers and let
R = k[xij|1 ≤ i ≤ n, 1 ≤ j ≤ n + 2] be the polynomial ring over a
field k with indeterminates xij. Choi, Kang and Ko [6] introduced a
complete matrix of grade g to describe a structure theorem for complete
intersections of grade g > 3. Choi, Kang and Ko [6] also showed that
the second differential map of the Koszul complex defined by a regular
sequence x = x1, x2, . . . , xg satisfies the conditions of Proposition 4.3
and Theorem 4.4 [6]. By using them and the induction on g > 3 we can
define a complete matrix of grade g > 3 from the second differential map
of the Koszul complex defined by a regular sequence x. Theorem 4.4 [6]
enables us to define a complete matrix of grade g. By the induction on g,
we call T̄k given in Theorem 4.4 [6] a complete matrix of grade g− 1 for
each k. For more background information we refer the reader to [6, 11].

Definition 2.1. [6] Let R be a commutative ring with identity. Let
g > 3 and t =

(
g
2

)
be integers. A g × t matrix f over R is said to be

complete of grade g if
(1) f has g disjoint pairs (S, T ) of a g × (g − 1) submatrix S and a
g × (t− g + 1) submatrix T ;
(2) By removing a row and interchanging columns, each pair (S, T ) can
be reduced to a pair (S̄, T̄ ), where S̄ is a (g−1)×(g−1) diagonal matrix
with det(S̄) = xg−1 for some x in R, up to sign, and T̄ is the complete
matrix of grade g − 1 with grade Kg−2(T̄ ) = g − 1.

Let n be an integer with n ≥ 2 and xi1, xi2, . . . , xin+2 a regular se-
quence on R for i = 1, 2, . . . , n. First we construct a complete matrix of
grade n+2. Let j and k be integers with 1 ≤ j ≤ n+1 and 1 ≤ k ≤ n+2,
respectively. We define f(i, j, k) to be a 1 × (n + 2 − j) matrix whose
the lth entry is given by

(2.1) f(i, j, k)l =


(−1)j+1xij if j < k and l = k − j

0 if j < k and l ̸= k − j

(−1)l+jxij+l if j = k

0 if j > k.

Then we observe easily from (2.1) that if j > k, then f(i, j, k) is a zero
matrix and, if j = k, then f(i, j, k) has the form of

f(i, j, k) =
[
(−1)1+jxi1+j (−1)2+jxi2+j · · · (−1)n+2xin+2

]
,
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and, if j < k, then the (k−j)th entry of f(i, j, k) is (−1)j+1xij and other
entries are equal to zero. Let s =

(
n+2
2

)
. Define f(i, k) to be an s × 1

matrix given by

(2.2) f(i, k) =
[
f(i, 1, k) f(i, 2, k) · · · f(i, n+ 1, k)

]t
.

We also define f(i) to be an (n+ 2)× s matrix given by

(2.3) f(i) =
[
f(i, 1) f(i, 2) · · · f(i, n+ 2)

]t
.

The following theorem shows that f(i) is a complete matrix of grade
n+ 2.

Theorem 2.2. With notations as above, we have
(1) Every row of f(i) has exactly (n+ 1) nonzero entries.
(2) Every column of f(i) has exactly two nonzero entries.
(3) Pairs of positive integers which represent the positions of the two
nonzero entries in any two columns of f(i) are all distinct.

Proof. (1) It suffices to show that f(i, k) has exactly (n+ 1) nonzero
entries for each k. It follows from (2.1) that if k = 1 and j = k, then
every entry of f(i, j, k) is nonzero and if j > k, then f(i, j, k) is a zero
matrix. Hence we can get from (2.2) that the number of nonzero entries
of f(i, 1)t is equal to n + 1. It follows from (2.1) that if k > 1, then
the number of nonzero entries of f(i, j, k) is equal to 1 for j < k and
every entry of f(i, k, k) is nonzero. Moreover f(i, j, k) is a zero matrix
for j > k. Hence the number of nonzero entries of f(i, k) is equal to
n+ 1.
(2) It follows from (2.2) and (2.3) that if rk(f(i)) is the kth row of f(i),
then we have

rk(f(i)) =
[
f(i, 1, k) f(i, 2, k) · · · f(i, n+ 1, k)

]
.

Let cl(f(i)) be the lth column of f(i). We show that the number of
nonzero entries of cl(f(i)) is equal to 2. We observe from (2.1) that if
l is an integer with 1 ≤ l ≤ n + 1, then the first and (l + 1)th entries
of cl(f(i)) are nonzero and other entries are zero: if l is an integer with
n + 2 ≤ l ≤ 2n + 1, then the second and (l − (n + 1) + 2)th entries of
cl(f(i)) are nonzero and other entries are zero. Continuing this way, we
get the following : if

ϕ(m) =
m−1∑
q=1

(n+ 2− q)
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and if l is an integer with 1+ϕ(h) ≤ l ≤ ϕ(h+1) for h = 1, 2, . . . , n+1,
then the hth and (l − ϕ(h) + h)th entries of cl(f(i)) are nonzero and
other entries are zero. Thus we get the desired result.
(3) It follows from the observation in part (2).

We describe a submatrix of an m × n matrix h for the following
example. Let h(i1, i2, . . . , ip|j1, j2, . . . , jq) be the p × q submatrix of
h consisting of the pq entries at the intersection of rows i1, i2, . . . , ip
with columns j1, j2, . . . , jq, where 1 ≤ i1 < i2 < · · · < ip ≤ m and
1 ≤ j1 < j2 < · · · < jq ≤ n.

Now we give an example to illustrate Theorem 2.2.

Example 2.3. Let xi1, xi2, . . . , xi4 be a regular sequence on a com-
mutative ring with identity. For i = 1, 2, we define f(i, j, k) to be a
1× (4− j) matrix as follows

f(i, 1, 1) =
[
xi2 −xi3 xi4

]
, f(i, 2, 1) =

[
0 0

]
, f(i, 3, 1) =

[
0
]
,

f(i, 1, 2) =
[
xi1 0 0

]
, f(i, 2, 2) =

[
−xi3 xi4

]
, f(i, 3, 2) =

[
0
]
,

f(i, 1, 3) =
[
0 xi1 0

]
, f(i, 2, 3) =

[
−xi2 0

]
, f(i, 3, 3) =

[
xi4

]
,

f(i, 1, 4) =
[
0 0 xi1

]
, f(i, 2, 4) =

[
0 −xi2

]
, f(i, 3, 4) =

[
xi3

]
.

Then we have

f(i, 1) =
[
xi2 −xi3 xi4 0 0 0

]t
, f(i, 2) =

[
xi1 0 0 −xi3 xi4 0

]t
,

f(i, 3) =
[
0 xi1 0 −xi2 0 xi4

]t
, f(i, 4) =

[
0 0 xi1 0 −xi2 xi3

]t
and

f(i) =


f(i, 1)t

f(i, 2)t

f(i, 3)t

f(i, 4)t

 =


xi2 −xi3 xi4 0 0 0
xi1 0 0 −xi3 xi4 0
0 xi1 0 −xi2 0 xi4

0 0 xi1 0 −xi2 xi3

 .

It is easy to show that f(i) is a complete matrix of grade 4 for each i.
We observe that every row of f(i) contains exactly three nonzero and
three zero entries. For k = 1, 2, 3, 4, let Sk be the 4×3 submatrix of f(i)
formed by the three columns which entries of the kth row of f(i) are
nonzero and let Tk be the 4 × 3 submatrix of f(i) formed by the three
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columns which entries of the kth row of f(i) are zero. That is,

S1 = f(i)(1, 2, 3, 4|1, 2, 3), T1 = f(i)(1, 2, 3, 4|4, 5, 6),
S2 = f(i)(1, 2, 3, 4|1, 4, 5), T2 = f(i)(1, 2, 3, 4|2, 3, 6),
S3 = f(i)(1, 2, 3, 4|2, 4, 6), T3 = f(i)(1, 2, 3, 4|1, 3, 5),
S4 = f(i)(1, 2, 3, 4|3, 5, 6), T4 = f(i)(1, 2, 3, 4|1, 2, 4).

Let S̄k be the 3× 3 submatrix of Sk obtained by deleting the kth row of
Sk for each k. Then S̄k is a diagonal matrix with determinant x3

k. Let T̄k

be the 3× 3 matrix obtained by exchanging the first and third columns
of Tk and by deleting the kth row of Tk. Then T̄k becomes an alternating
matrix when the second column is multiplied by −1, and Pf2(A(T̄k)) has
grade 3 for each k.( The definition of A(T̄k) has appeared in (3.1) [11].)
Hence f(i) is a complete matrix of grade 4. Actually it is the second
differential map in the Koszul complex defined by a regular sequence
xi = xi1,−xi2, xi3,−xi4.

The following proposition plays an important role in defining an
(
n+2
2

)
×

n(n+ 2) matrix defined by complete matrices of grade n+ 2.

Proposition 2.4. With notations as above, if xi1, xi2, . . . , xin+2 is a
regular sequence on R for each i, then f(i) is a complete matrix of grade
n+ 2.

Proof. It suffices to show that the conditions of Proposition 4.3 and
Theorem 4.4 [6] are satisfied. Since xi1, xi2, . . . , xin+2 is a regular se-
quence for each i, so is xi1,−xi2, xi3,−xi4, . . . , (−1)k+1xik, . . . , (−1)n+3xin+2.

Thus

yi1 = −xi2, xi3,−xi4, . . . , (−1)k+1xik, . . . , (−1)n+3xin+2

is a regular sequence. We observe that f(i) has the form

(2.4)

f(i) =

[
l1(i) 0
l2(i) f(i)1

]
,

l1(i) =
[
−xi2 xi3 −xi4 · · · (−1)k+1xik · · · (−1)n+3xin+2

]
,

l2(i) = diag{xi1, xi1, · · · , xi1}
f(i)1 = the second differential map in the Koszul complex K(yi1).

Let s =
(
n+2
2

)
. It follows from part (1) of Theorem 2.2 that every row of

f(i) has exactly (n+ 1) nonzero and (s− n− 1) zero entries. Let Sk be
the (n+2)× (n+1) submatrix of f(i) formed by (n+1) columns which
entries of the kth row of f(i) are nonzero. Let Tk be the (n+2)× (n+1)
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submatrix of f(i) formed by (s−n−1) columns which entries of the kth
row of f(i) are zero. We have shown that the conditions of Proposition
4.3 [6] are satisfied. It follows from Theorem 2.2 that the conditions of
Theorem 4.4 [6] are satisfied.

Now we are ready to give a matrix defined by complete matrices f(i) of
grade n+ 2.

Definition 2.5. Let R be a commutative ring with identity. Let n
be an integer with n ≥ 2 and xi1, xi2, . . . , xin+2 a regular sequence on R
for each i(1 ≤ i ≤ n). Let f(i) be an (n + 2) ×

(
n+2
2

)
complete matrix

of grade n + 2 defined in (2.3). We define f to be an
(
n+2
2

)
× n(n + 2)

matrix given by

f =
[
f(1)t −f(2)t · · · (−1)i+1f(i)t · · · (−1)n+1f(n)t

]
.

We call f the matrix defined by complete matrices f(i) of grade n+2.
The following example illustrates Definition 2.5.

Example 2.6. Let xi1, xi2, . . . , xi4 be a regular sequence on a com-
mutative ring with identity for each i. Then, as shown in Example 2.3,
f(i)t has the form

f(i)t =


xi2 xi1 0 0
−xi3 0 xi1 0
xi4 0 0 xi1

0 −xi3 −xi2 0
0 xi4 0 −xi2

0 0 xi4 xi3

 .

We have proved that f(1) and f(2) are complete matrices of grade 4.
The matrix f given by f =

[
f(1)t −f(2)t

]
, that is,

f =


x12 x11 0 0 −x22 −x21 0 0
−x13 0 x11 0 x23 0 −x21 0
x14 0 0 x11 −x24 0 0 −x21

0 −x13 −x12 0 0 x23 x22 0
0 x14 0 −x12 0 −x24 0 x22

0 0 x14 x13 0 0 −x24 −x23


is a 6× 8 matrix defined by complete matrices f(1) and f(2) of grade 4.

The following proposition is a consequence of Theorem 4.4 [6].

Proposition 2.7. With notations as above, if f is a matrix defined
by complete matrices f(i) of grade n + 2, then f has exactly n(n + 2)
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(n + 1) × (n + 1) diagonal submatrices Sij of which the determinant is
the (n+ 1)st power of xij.

Proposition 2.7 enables us to define an ideal associated with the ma-
trix f defined by complete matrices f(i) of grade n + 2, called the de-
terminantal ideal of an n× (n+ 2) matrix D(f).

Definition 2.8. Let R be a commutative ring with identity. Let f be
a matrix defined by complete matrices f(i) of grade n+ 2 in Definition
2.5 and xij the (n+1)st root of the determinant of the (n+1)× (n+1)
diagonal submatrix Sij of f mentioned in Proposition 2.7. Let D(f) =
(xij) be an n× (n+ 2) matrix. Let Xij be the element of R defined by

Xij =


detAij if i < j

0 if i = j

− detAji if i > j

,where Aij is the submatrix of D(f) obtained by deleting two columns i
and j of D(f). Define Dn+1(f) to be an ideal generated by elements Xij,
that is,

Dn+1(f) = (X12, X13, . . . , Xn+1n+2).

Now we construct the minimal free resolution F of R/Dn+1(f) such
that the second differential map of F is an

(
n+2
2

)
× n(n + 2) matrix f

defined by complete matrices f(i) of grade n+ 2.
Let s =

(
n+2
2

)
. Let f1 be a map from Rs to R defined by

f1 =
[
X12 X13 · · · Xn+1n+2

]
: Rs → R,

and f2 a map from Rn(n+2) to Rs defined by

f2 = f : Rn(n+2) → Rs.

For n ≥ 2, let

s(n) = n(n+ 2)− s+ 1 =

(
n+ 1

2

)
.

Finally we construct a map f3 from Rs(n) to Rn(n+2) such that

(2.5) F : 0 // Rs(n) f3 // Rn(n+2) f2 // Rs f1 // R

is a minimal free resolution of R/Dn+1(f). Since xi = xi1, xi2, . . . , xin+2

is a regular sequence,

Kn+1(f(i)) = (xi1,−xi2, . . . , (−1)k+1xik, . . . , (−1)n+3xin+2)
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is a complete intersection of grade n+2 for each i. Hence by Theorem 4.10
[6], we have the Koszul complex K(x̃i) defined by the regular sequence
x̃i = xi1,−xi2, . . . , (−1)k+1xik, . . . , (−1)n+3xin+2 such that the second

differential map of K(x̃i) is f(i). For each i we define f̃(i) to be an
(n+ 2)× 1 matrix given by

f̃(i) =
[
xi1 −xi2 · · · (−1)k+1xik · · · (−1)n+3xin+2

]t
.

We note that (
n+ 1

2

)
=

(
n

1

)
+

(
n

2

)
.

Let h1(i) be an n(n + 2) × 1 matrix defined as follows: we first divide
h1(i) by n (n+ 2)× 1 submatrices of it. The ith (n+ 2)× 1 submatrix

of it is f̃(i) and other (n+ 2)× 1 submatrices are zero matrices. Define
h1 to be an n(n+ 2)× n matrix given by

(2.6) h1 =
[
h1(1) −h1(2) · · · (−1)i+1h1(i) · · · (−1)n+1h1(n)

]
.

Similarly, we define h2 to be an n(n + 2)×
(
n
2

)
matrix given as follows:

Let h2(k) be the kth column of h2. We divide h2(k) by n (n + 2) × 1
submatrices of it. Let P (n + 2) = {(i, j)|1 ≤ i < j ≤ n + 2} be the set
of pairs of integers. We set the lexicographic order on P, that is,

(1, 2) < (1, 3) < · · · < (1, n+ 2) < (2, 3) < (2, 4) < · · · < (n+ 1, n+ 2).

Let (k1, k2) be the kth element in P (n+ 2). Define the k1th (n+ 2)× 1

submatrix of h2(k) to be a (−1)k2+1f̃(k2), the k2th submatrix of it to be

a (−1)k1 f̃(k1), and other (n + 2) × 1 submatrices to be zero. Hence h2

is of the form

(2.7) h2 =
[
h2(1) h2(2) · · · h2(i) · · · h2(n)

]
.

Finally, using (2.6) and (2.7), we define a map f3 from Rs(n) to Rn(n+2)

given by

f3 =
[
h1 h2

]
: Rs(n) → Rn(n+2).

We show that the sequence F of free R-modules and R-maps defined
in (2.5) is a complex.

Lemma 2.9. With reference to Definition 2.8, for k = 1, 2, . . . , n+ 2,
we have

n+2∑
j=1

(−1)j+1xijXjk = 0 for each i(1 ≤ i ≤ n).
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Proof. Let f be an s× n(n+ 2) matrix defined by complete matrices
f(i) and X = D(f) = (xij) an n× (n + 2) matrix defined in Definition
2.8, where s =

(
n+2
2

)
. Let X(l) be an n × (n + 1) submatrix of D(f)

obtained by deleting the lth column of D(f). Define X(i)(k) to be an
(n+ 1)× (n+ 1) matrix given by

X(i)(k) =

[
ri(X

(k))
X(k)

]
,where ri(X

(k)) is the ith row of X(k).
Since detX(i)(k) =

∑n+2
j=1 (−1)j+1xijXjk and detX(i)(k) = 0 for each i,

the result holds.

The following lemma says that F defined in (2.5) becomes a free complex.

Lemma 2.10. With notations as above,
(1) f(i)f̃(i) = 0 for each i.
(2) fifi+1 = 0 for i = 1, 2.

Proof. (1) Clear.
(2) For i = 1, it is immediate from Lemma 2.9 and the definitions of f1
and f2. For i = 2, it is immediate from part (1) and the constructions
of f2 and f3.

To complete our main result we need two lemmas.

Lemma 2.11. With notations as above, Is−1(f) contains some powers
of Xij.

Proof. We note that f2 = f. Let v = f. For each k with 1 ≤ k ≤ s,
we let vk be the submatrix of v obtained by deleting the kth row of it.
Let P (n + 2) be a set of pairs of integers defined as above and (k1, k2)
the kth element in P (n + 2). We show that Is−1(vk) contains Xk1k2

n+1.
It is sufficient to show this for the case k = 1. The proof for other cases
is similar. Let n = 2. Then s− 1 =

(
4
2

)
− 1 = 5, and v has the following

form

v =


x12 x11 0 0 −x22 −x21 0 0
−x13 0 x11 0 x23 0 −x21 0
x14 0 0 x11 −x24 0 0 −x21

0 −x13 −x12 0 0 x23 x22 0
0 x14 0 −x12 0 −x24 0 x22

0 0 x14 x13 0 0 −x24 −x23

 .
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We note that X12 = x13x24 − x14x23. Let v1(i1, i2, . . . , i5) be the 5 × 5
submatrix of v1 formed by five columns i1, i2, . . . , i5 of v1. Then we have

det v1(1, 2, 3, 5, 6) = x14X12
2, and det v1(1, 2, 4, 5, 6) = x13X12

2.

Therefore

−x23 det v1(1, 2, 3, 5, 6) + x24 det v1(1, 2, 4, 5, 6) = X12
3 ∈ I5(v).

Now we consider the case n > 2. We have three cases to consider: n =
3, n = 4 and n > 4.
(a) n = 3. Then s − 1 = 9. We observe from Theorem 2.2 that for
each i, every column and row of f(i)t contain exactly n+1 nonzero and
two nonzero entries, respectively. The definition of v says that every
column and row of v has exactly n+ 1 nonzero and 2n nonzero entries,
respectively. Hence it follows from part (3) of Theorem 2.2 that v1 has
exactly 2n columns having n nonzero entries and exactly n2 columns
having n + 1 nonzero entries. Let B1 be the submatrix of v1 formed
by 2n columns of v1 having exactly n nonzero entries. Then B1 is an
(s − 1) × 2n matrix. For each i, let l1(i) be the sequence of the xi’s
defined in (2.4) and l11(i) the submatrix of l1(i) obtained by deleting the
first column of it. Then B1 has the following form:

B1 =

[
B1

0

]
, where B1 =

[
B1(1) B1(2) · · · B1(n)

]
,

B1(i) = (−1)i+1

[
l11(i)

t 0
0 l11(i)

t

]
.

(2.8)

It is easy to show that det(B1) = X12
2. Let f(i)t1 be the submatrix of

f(i)t obtained by deleting the first row of it. It follows from Theorem 2.2
that f(i)t1 has three columns containing n+ 1 nonzero entries for each i
such that by interchanging these three columns and then multiplying the
second column by−1, the three rows of them form a 3×3 alternating ma-
trix. We denote them by (−1)i+1f(1)i1

t, (−1)i+1f(2)i1
t, (−1)i+1f(3)i1

t,
respectively. Let p, q, and r be integers with 1 ≤ p, q, r ≤ 3 such
that only two of them are equal. Let i, j, and k be integers with
1 ≤ i, j, k ≤ 3 such that either all of them are distinct or only two
of them are equal. Let B2(ip, jq, kr) be the submatrix of v1 formed by

three columns (−1)i+1f(p)i1
t, (−1)j+1f(q)j1

t and (−1)k+1f(r)k1
t of v1.

Now we define B(ip, jq, kr) to be an (s − 1) × (s − 1) submatrix of v1
given by

B(ip, jq, kr) =
[
B1 B2(ip, jq, kr)

]
.
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We show that if Is−1(B) is an ideal generated by the determinants of the
(s − 1) × (s − 1) submatrices B(ip, jq, kr) of v1, then Is−1(B) contains
X12

4. We define X(s1, s2, . . . , sa|t1, t2, . . . , tb) to be the submatrix of X
formed by rows s1, s2, . . . , sa and columns t1, t2, . . . , tb of X. Now we set

D13 = detX(2, 3|4, 5), D23 = detX(1, 3|4, 5), D33 = detX(1, 2|4, 5)
D14 = detX(2, 3|3, 5), D24 = detX(1, 3|3, 5), D34 = detX(1, 2|3, 5).

Then we have

X12 = x13D13 − x23D23 + x33D33 = −x14D14 + x24D24 − x34D34.

Let B̃2(ip, jq, kr) be the submatrix of B2(ip, jq, kr) formed by the last
three rows of B2(ip, jq, kr). Then it follows from (2.8) and the determi-
nant of the block matrix that

detB(ip, jq, kr) = X12
2 det B̃2(ip, jq, kr).

The following simple computation shows that X12
2 is a linear combina-

tion of elements det B̃2(ip, jq, kr):

(2.9)

− x13x14D13D14 − x23x24D23D24 − x33x34D33D34

= − detB(13, 21, 31) detB(13, 22, 32)− detB(11, 23, 31) detB(12, 23, 32)

− detB(11, 21, 13) detB(12, 22, 33),

and

(2.10)

x13x24D13D24 = −x13x24x33 detB(12, 21, 31) + x2
13x35 detB(21, 23, 31),

−x13x34D13D34 = −x13x
2
34 detB(12, 21, 22) + x13x24x34 detB(12, 22, 31),

x14x23D14D23 = x14x23x33 detB(11, 22, 31)− x14x
2
23 detB(11, 31, 32),

x23x34D14D23 = x15x
2
34 detB(12, 22, 23)− x15x2,3x35 detB(12, 22, 31),

−x14x33D14D33 = −x14x
2
33 detB(11, 21, 22)− x13x24x35 detB(12, 22, 31),

x24x33D24D33 = −x24x
2
33 detB(11, 12, 21) + x13x24x33 detB(11, 21, 32).

Hence it follows from (2.9) and (2.10) that X12
4 is contained in the ideal

Is−1(B).
(b) n = 4. Then s − 1 = 14. As shown in the case of n = 3, Theorem
2.2 states that every column and row of v has exactly n + 1 nonzero
and 2n nonzero entries, respectively. Let B1, B1 and l11(i) be the ma-
trices defined as in the case of n = 3. Direct computation shows that
det(B1) = X12

2. Since xi3,−xi4, xi5,−xi6 is a regular subsequence of the
regular sequence xi1,−xi2, xi3,−xi4, xi5,−xi6 for each i, by Theorem 3.5
[11], there exists a 4× 6 complete submatrix ˇf(i) of a complete matrix
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f(i) of grade 6 such that K3( ˇf(i)) = xi3,−xi4, xi5,−xi6 is a complete

intersection of grade 4. ˇf(i) has the following form

ˇf(i)
t
=


−xi4 −xi3 0 0
xi5 0 −xi3 0
−xi6 0 0 −xi3

0 xi5 xi4 0
0 −xi6 0 xi4

0 0 −xi6 −xi5

 .

Hence v1 contains exactly four columns such that the first three entries
of the last six entries of them are nonzero, and the second three entries

of them are zero ( For example, see the first column of ˇf(i)
t
). Let

C2(l1, l2, l3) be the (s− 1)× 3 submatrix of v1 formed by three columns
l1, l2, l3 of the above four columns in this order. Let B2(ip, jq, kr) be the
(s−1)×3 submatrix of v1 defined as in the case of n = 3. Now we define
B(l1, l2, l3, ip, jq, kr) to be an (s− 1)× (s− 1) submatrix of v1 given by

B(l1, l2, l3, ip, jq, kr) =
[
B1 C2(l1, l2, l3) B2(ip, jq, kr)

]
.

Let B̃2(ip, jq, kr) be the submatrix of v1 defined as in the case of n = 3.

Let C̃2(l1, l2, l3) be the submatrix of v1 consisting of the second three
nonzero entries of the last six entries of c(v1) described as above. Then

detB(l1, l2, l3, ip, jq, kr) = X12
2 det C̃2(l1, l2, l3) det B̃2(ip, jq, kr).

Similarly to the case of n = 3, if Is−1(B) is the ideal generated by the
determinants of the submatrices B(l1, l2, l3, ip, jq, kr), then it contains
X12

5.
(c) n > 4. Similarly to the case of n = 4, we can see that if Is−1(B) is
the ideal generated by the determinants of the submatrices of v1 defined
as in the case of n = 4, then Is−1(B) contains X12

n+1.

Lemma 2.12. With notations as above, Is(n)(f3) contains some powers
of Xij for every i < j.

Proof. Let P (n + 2) be the set of pairs of integers defined as above
and (k1, k2) the kth element in P (n+2). Let w = f3 and wk an n2×s(n)
submatrix of w obtained by deleting rows k1, k2, (n + 2) + k1, (n + 2) +
k2, . . . , (n− 1)(n+2)+ k1, (n− 1)(n+2)+ k2 of w. Similarly to Lemma
2.11, we can show that Is(n)(wk) contains Xk1k2

n for each k. In the proof
of Lemma 2.11 we used the column expansion of the determinant Xk1k2

but in this lemma we perform the row expansion of its determinant.
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The following theorem is our main result.

Theorem 2.13. Let R be a noetherian local ring with maximal ideal
m. With the notation as above F is the minimal free resolution of
R/In(D(f)) such that the second differential map of F is a matrix f
defined by the complete matrices f(i) of grade n+ 2.

Proof. In Lemma 2.10 we proved that F is a complex. In Lemmas
2.11 and 2.12 we also showed that the rank and depth conditions in the
Buchsbaum and Eisenbud’s acyclicity criterion [3] are satisfied. Since
xi1, xi2, . . . , xin+2 is a regular sequence for each i, every xik is contained
in m for every k. Hence F is minimal. It is obvious that the second
differential map of F is f.

We finish this section with the following example illustrating Theorem
2.13.

Example 2.14. Let R = Q[[x, y, z, u, w]] be the formal power series
ring over the field Q of rational numbers with indeterminates x, y, z, u, w.
We note that x, y, z, u, w is a regular sequence. Let f(1), f(2) and f(3)
be 5× 10 matrices given by

f(1) =



−y −x 0 0 0
z 0 −x 0 0
−u 0 0 −x 0
w 0 0 0 −x
0 z y 0 0
0 −u 0 y 0
0 w 0 0 y
0 0 −u −z 0
0 0 w 0 −z
0 0 0 w u



t

, f(2) =



u z 0 0 0
−x 0 z 0 0
w 0 0 z 0
−y 0 0 0 z
0 −x −u 0 0
0 w 0 −u 0
0 −y 0 0 −u
0 0 w x 0
0 0 −y 0 x
0 0 0 −y −w



t

,

f(3) =



−x −w 0 0 0
y 0 −w 0 0
−z 0 0 −w 0
u 0 0 0 −w
0 y x 0 0
0 −z 0 x 0
0 u 0 0 x
0 0 −z −y 0
0 0 u 0 −y
0 0 0 u z



t

.
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Then they are complete matrices of grade 5. Moreover f̃(1), f̃(2), and

f̃(3) are given by

f̃(1) =
[
x −y z −u w

]t
, f̃(2) =

[
z −u x −w y

]t
,

f̃(3) =
[
w −x y −z u

]t
.

Let f be a 10× 15 matrix defined by complete matrices f(1), f(2), and
f(3), that is

f =
[
f(1)t −f(2)t f(3)t

]
.

Then x, y, z, u, and w are the fourth roots of the determinants of the
4× 4 diagonal submatrices of f(i) for each i. Let X = D(f) be a 3× 5
matrix defined in Definition 2.8, that is,

D(f) =

x −y z −u w
z −u x −w y
w −x y −z u

 .

LetXij be the determinant of the submatrix ofD(f) obtained by deleting
two columns i, j of it. Thus D4(f) is generated by the elements Xij. The
minimal free resolution F of R/D4(f) is

F : 0 // R6 f3 // R15 f2 // R10 f1 // R,

where

f1 =
[
X12 X13 X14 X15 X23 X24 X25 X34 X35 X45

]
,

f2 =
[
f(1)t −f(2)t f(3)t

]
,

f3 =

−f̃(1) 0 0 0 f̃(3) −f̃(2)

0 f̃(2) 0 f̃(3) 0 f̃(1)

0 0 −f̃(3) −f̃(2) −f̃(1) 0

 .

Clearly the second differential map of F is f and D4(f) = I3(X̃), where

X̃ =

x y z u w
z u x w y
w x y z u

 .
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