참고문헌
- D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Al- gebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
- D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847-2852. https://doi.org/10.1080/00927879908826596
- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (8) (2008), 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
- E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974) 470-473. https://doi.org/10.1017/S1446788700029190
- V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 1607- 1619. https://doi.org/10.1090/S0002-9939-10-10252-4
- P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), 641-648. https://doi.org/10.1112/S0024609399006116
- K.R. Goodearl, R.B. Wareld, JR., An Introduction to Noncommutative Noe- therian Rings, Cambridge University Press (1989).
- C. Huh, H.K. Kim, N.K. Kim, Y. Lee, Basic examples and extensions of sym- metric rings, J. Pure Appl. Algebra 202 (2005), 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
- C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761. https://doi.org/10.1081/AGB-120013179
- N.K. Kim, K.H. Lee, Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205-2218. https://doi.org/10.1080/00927870600549782
- N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488. https://doi.org/10.1006/jabr.1999.8017
- N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- J. Krempa, D. Niewieczerzal, Rings in which annihilators are ideals and their ap- plication to semigroup rings, Bull. Acad. Polon. Sci. Ser. Sci., Math. Astronom, Phys. 25 (1977), 851-856.
- T.K. Kwak, Y. Lee, Re exive property of rings, Comm. Algebra 40 (2012) 1576- 1594. https://doi.org/10.1080/00927872.2011.554474
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
- T.-K. Lee, T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583-593.
- Z.-K. Liu, G. Yang, On strongly reversible rings, Taiwanese J. Math. 12 (2008), 129-136. https://doi.org/10.11650/twjm/1500602492
- G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17. https://doi.org/10.3792/pjaa.73.14