DOI QR코드

DOI QR Code

RINGS OVER WHICH POLYNOMIAL RINGS ARE ARMENDARIZ AND REVERSIBLE

  • 투고 : 2012.06.24
  • 심사 : 2012.07.30
  • 발행 : 2012.09.30

초록

A ring R is called reversibly Armendariz if $b_ja_i=0$ for all $i$, $j$ whenever $f(x)g(x)=0$ for two polynomials $f(x)=\sum_{i=0}^{m}a_ix^i,\;g(x)=\sum_{j=0}^{n}b_jx^j$ over R. It is proved that a ring R is reversibly Armendariz if and only if its polynomial ring is reversibly Armendariz if and only if its Laurent polynomial ring is reversibly Armendariz. Relations between reversibly Armendariz rings and related ring properties are examined in this note, observing the structures of many examples concerned. Various kinds of reversibly Armendariz rings are provided in the process. Especially it is shown to be possible to construct reversibly Armendariz rings from given any Armendariz rings.

키워드

참고문헌

  1. D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Al- gebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
  2. D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847-2852. https://doi.org/10.1080/00927879908826596
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (8) (2008), 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974) 470-473. https://doi.org/10.1017/S1446788700029190
  5. V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 1607- 1619. https://doi.org/10.1090/S0002-9939-10-10252-4
  6. P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), 641-648. https://doi.org/10.1112/S0024609399006116
  7. K.R. Goodearl, R.B. War eld, JR., An Introduction to Noncommutative Noe- therian Rings, Cambridge University Press (1989).
  8. C. Huh, H.K. Kim, N.K. Kim, Y. Lee, Basic examples and extensions of sym- metric rings, J. Pure Appl. Algebra 202 (2005), 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
  9. C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761. https://doi.org/10.1081/AGB-120013179
  10. N.K. Kim, K.H. Lee, Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205-2218. https://doi.org/10.1080/00927870600549782
  11. N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488. https://doi.org/10.1006/jabr.1999.8017
  12. N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  13. J. Krempa, D. Niewieczerzal, Rings in which annihilators are ideals and their ap- plication to semigroup rings, Bull. Acad. Polon. Sci. Ser. Sci., Math. Astronom, Phys. 25 (1977), 851-856.
  14. T.K. Kwak, Y. Lee, Re exive property of rings, Comm. Algebra 40 (2012) 1576- 1594. https://doi.org/10.1080/00927872.2011.554474
  15. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  16. T.-K. Lee, T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583-593.
  17. Z.-K. Liu, G. Yang, On strongly reversible rings, Taiwanese J. Math. 12 (2008), 129-136. https://doi.org/10.11650/twjm/1500602492
  18. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  19. M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17. https://doi.org/10.3792/pjaa.73.14