DOI QR코드

DOI QR Code

One-pot synthesis of gold trisoctahedra with high-index facets

  • Kim, Do Youb (Department of Chemical and Biomolecular Engineering (BK21 graduate program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Kyeong Woo (Department of Chemical and Biomolecular Engineering (BK21 graduate program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Im, Sang Hyuk (KRICT-EPFL Global Research Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, O Ok (Department of Chemical and Biomolecular Engineering (BK21 graduate program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Zhong, Xiao-Lan (Institute of Physics, Chinese Academy of Science) ;
  • Li, Zhi-Yuan (Institute of Physics, Chinese Academy of Science)
  • Received : 2011.09.30
  • Accepted : 2012.03.16
  • Published : 2012.03.25

Abstract

There have been many efforts on the generating metal nanocrystals enclosed by high-index facets for the use as highly active catalysts. This paper describes a facile synthesis of Au trisoctahedra with high-index facets. In brief, the Au trisoctahdra were prepared by reduction of $HAuCl_4$ in N,N-dimethylformamide (DMF) containing poly (vinyl pyrrolidone) (PVP) and trace amount of $AgNO_3$. The Ag ions in the reaction solution played a critical role in controlling the trisoctahedral shape of the final product by underpotential deposition (UPD) on the Au surfaces. The as-prepared Au trisoctahedra were single crystal and enclosed by high-index {441}, {773} and {331} facets.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M.A. (2005), "Chemistry and properties of nanocrystals of different shapes", Chem. Rev., 105(4), 1025-1102. https://doi.org/10.1021/cr030063a
  2. Carbo-Argibay, E., Rodriguez-Gonzalez, B., Gomez-Grana, S., Guerrero-Martinez, A., Pastoriza-Santos, I., Perez-Juste, J. and Liz-Marzan, L.M. (2010), "The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets", Angew. Chem. Int. Edit., 49(49), 9397-9400. https://doi.org/10.1002/anie.201004910
  3. Chen, J., Lim, B., Lee, E.P. and Xia, Y. (2009), "Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications", Nano Today, 4(1), 81-95. https://doi.org/10.1016/j.nantod.2008.09.002
  4. Conway, J.H., Burgiel, H. and Goodman-Strauss, C. (2008), The symmetries of things, Ed. A.K. Peters, Wellesley, MA.
  5. Grzelczak, M., Perez-Juste, J., Mulvaney, P. and Liz-Marzan, L.M. (2008), "Shape control in gold nanoparticle synthesis", Chem. Soc. Rev., 37(9), 1783-1791. https://doi.org/10.1039/b711490g
  6. Guo, S. and Wang, E. (2011), "Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors", Nano Today, 6(3), 240-264. https://doi.org/10.1016/j.nantod.2011.04.007
  7. Herrero, E., Buller, L.J. and Abruna, H. (2001), "Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials", Chem. Rev., 101(7), 1897-1930. https://doi.org/10.1021/cr9600363
  8. Jin, M., Zhang, H., Xie, Z. and Xia, Y. (2011), "Palladium concave nanocubes with high-index facets and their enhanced catalytic properties", Angew. Chem. Int. Edit., 50(34), 7850-7854. https://doi.org/10.1002/anie.201103002
  9. Kim, D.Y., Im, S.H. and Park, O.O. (2010), "Synthesis of tetrahexahedral gold nanocrystals with high-index facets", Cryst. Growth Des., 10(8), 3321-3323. https://doi.org/10.1021/cg100639s
  10. Kim, D.Y., Im, S.H., Park, O.O. and Lim, Y.T. (2010), "Evolution of gold nanoparticles through catalan, archimedean, and platonic solids", Cryst. Eng. Comm., 12(1), 116-121. https://doi.org/10.1039/b914353j
  11. Kim, D.Y., Li, W., Ma, Y., Yu, T., Li, Z.Y., Park, O.O. and Xia, Y. (2011), "Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties", Chem. Eur. J., 17(17), 4759-4764. https://doi.org/10.1002/chem.201100365
  12. Kokkinidis, G. (1986), "Underpotential deposition and electrocatalysis", J. Electroanal. Chem., 201(2), 217-236. https://doi.org/10.1016/0022-0728(86)80051-1
  13. Li, J., Wang, L., Liu, L., Guo, L., Han, X. and Zhang, Z. (2010), "Synthesis of tetrahexahedralAunanocrystals with exposed high-index surfaces", Chem. Commun., 46(28), 5109-5111. https://doi.org/10.1039/c0cc00138d
  14. Lim, B., Jiang, M., Tao, J., Camargo, P.H.C., Zhu, Y. and Xia, Y. (2009), "Shape-controlled synthesis of Pd nanocrystals in aqueous solutions", Adv. Func. Mater., 19(2), 189-200. https://doi.org/10.1002/adfm.200801439
  15. Liu, M. and Guyot-Sionnest, P. (2005), "Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids", J. Phys. Chem. B, 109(47), 22192-22200. https://doi.org/10.1021/jp054808n
  16. Ma, Y., Kuang, Q., Jiang, Z., Xie, Z., Huang, R. and Zheng, L. (2008), "Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method", Angew. Chem. Int. Edit., 47(46), 8901-8904. https://doi.org/10.1002/anie.200802750
  17. Ming, T., Feng, W., Tang, Q., Wang, F., Sun, L., Wang, J. and Yan, C. (2009), "Growth of tetrahexahedral gold nanocrystals with high-index facets", J. Am. Chem. Soc., 131(45), 16350-16351. https://doi.org/10.1021/ja907549n
  18. Narayanan, R. and El-Sayed, M.A. (2004), "Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution", Nano Lett., 4(7), 1343-1348. https://doi.org/10.1021/nl0495256
  19. Personick, M.L., Langille, M.R., Zhang, J. and Mirkin, C.A. (2011), "Shape control of gold nanoparticles by silver underpotential deposition", Nano Lett., 11(8), 3394-3398. https://doi.org/10.1021/nl201796s
  20. Seo, D., Park, J.C. and Song, H. (2006), "Polyhedral gold nanocrystals with oh symmetry: from octahedra to cubes", J. Am. Chem. Soc., 128(46), 14863-14870. https://doi.org/10.1021/ja062892u
  21. Shao, M., Yu, T., Odell, J.H., Jin, M. and Xia, Y. (2011), "Structural dependence of oxygen reduction reaction on palladium nanocrystals", Chem. Commun., 47(23), 6566-6568. https://doi.org/10.1039/c1cc11004g
  22. Tao, A.R., Habas, S. and Yang, P. (2008), "Shape control of colloidal metal nanocrystals", Small, 4(3), 310-325. https://doi.org/10.1002/smll.200701295
  23. Tian, N., Xhou, Z.Y., Sun, S.G., Ding, Y. and Wang, Z.L. (2007), "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity", Science, 316(5825), 732-735. https://doi.org/10.1126/science.1140484
  24. Tian, N., Zhou, Z.Y. and Sun, S.G. (2008), "Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles", J. Phys. Chem. C, 112(50), 19801-19817. https://doi.org/10.1021/jp804051e
  25. Wang, J., Gong, J., Xiong, Y., Yang, J., Gao, Y., Liu, Y., Lu, X. and Tang, Z. (2011), "Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation", Chem. Commun., 47(24), 6894-6896. https://doi.org/10.1039/c1cc11784j
  26. Xia, Y. and Halas, N.J. (2005), "Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures", Mater. Res. Soc. Bull., 30(5), 338-348. https://doi.org/10.1557/mrs2005.96
  27. Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S.E. (2009), "Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?", Angew. Chem. Int. Edit., 48(1), 60-103. https://doi.org/10.1002/anie.200802248
  28. Yu, T., Kim, D.Y., Zhang, H. and Xia, Y. (2011), "Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction", Angew. Chem. Int. Edit., 50(12), 2773-2777. https://doi.org/10.1002/anie.201007859
  29. Yu, Y., Zhang, Q., Xie, J., Lu, X. and Lee, J.Y. (2011), "Synthesis of shield-like singly twinned high-index Au nanoparticles", Nanoscale, 3(4), 1497-1500. https://doi.org/10.1039/c1nr10053j
  30. Zhang, J., Langille, M.R., Personick, M.L., Zhang, K., Li, S. and Mirkin, C.A. (2010), "Concave cubic gold nanocrystals with high-index facets", J. Am. Chem. Soc., 132(40), 14012-14014. https://doi.org/10.1021/ja106394k
  31. Zhou, Z.Y., Tian, N., Li, J.T., Broadwell, I. and Sun, S.G. (2011), "Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage", Chem. Soc. Rev., 40(7), 4167-4185. https://doi.org/10.1039/c0cs00176g

Cited by

  1. High Yield Seedless Synthesis of High-Quality Gold Nanocrystals with Various Shapes vol.30, pp.9, 2014, https://doi.org/10.1021/la404602h
  2. A facile, one-pot synthesis of highly branched Au nanocorals and their enhanced electrocatalytic activity for ethanol oxidation vol.16, pp.36, 2014, https://doi.org/10.1039/C4CE00933A
  3. Shape- and size-controlled synthesis of noble metal nanoparticles vol.3, pp.4, 2014, https://doi.org/10.12989/amr.2014.3.4.199
  4. Probing Localized Surface Plasmons of Trisoctahedral Gold Nanocrystals for Surface Enhanced Raman Scattering vol.120, pp.47, 2016, https://doi.org/10.1021/acs.jpcc.6b09296