DOI QR코드

DOI QR Code

Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening

동합금의 워터캐비테이션피닝에 의한 내구성과 부식특성 평가

  • 김성종 (목포해양대학교 기관시스템 공학부) ;
  • 한민수 (목포해양대학교 기관시스템 공학부) ;
  • 김민성 ((주)디섹)
  • Received : 2012.04.26
  • Accepted : 2012.10.16
  • Published : 2012.10.31

Abstract

Cu alloy is widely used for marine applications due to its excellent ductility and high resistance for corrosion as wells as cavitation. However, long term exposure of the material to marine environments may result in damages caused by cavitation and corrosion. Water cavitation peening has been introduced in order to improve resistance of Cu alloy to corrosion and cavitation. The technology induces compressive residual stress onto the surface, and thus enhances the fatigue strength and life. In this study, the characteristics of the material were investigated by using water cavitaiton peening technique, and results showed that 2 minutes of water cavitation peening indicated the considerable improvement in hardness. On the other hand, over 10 minutes of water cavitation peening accelerated damages to the surface. In the case of ALBC3, water cavitation peening in the range of 2 to 10 minutes has shown the excellent durability and corrosion resistance while minimizing surface damages.

Keywords

References

  1. Jae-Ho Hwang and Uh-Joh Lim, J. Corros. Sci. Soc. of Kor., 25, 317 (1996).
  2. Myeong Hwan Im, Corros. Sci. Tech., 10, 21 (2011).
  3. A. G. Petersen and D. Klenerman, W. M. Hedges, Corrosion, 60, 187 (2004). https://doi.org/10.5006/1.3287719
  4. Kyung-Dong Park and Chan-Gi Jung, J. Ocean Eng. Tech., 15, 93 (2001).
  5. Chan-Gi Jung and Kyung-Dong Park, J. Ocean Eng. Tech.. 16, 73 (2002).
  6. F. P. Zimmerli, Metal Progress, 67, 97 (1952).
  7. C. A. Rodopoulos, J. Mat. Eng. Perform, 16, 30 (2007). https://doi.org/10.1007/s11665-006-9004-0
  8. E. Statnikov. Ultrasonic, 44, 533 (2006). https://doi.org/10.1016/j.ultras.2006.05.119
  9. C. Horsch, V. Schulze, and D. Lohe, Microsystem Technologies. 12, 691 (2006). https://doi.org/10.1007/s00542-006-0087-1
  10. A. Kienzler, V. Schulze, D. Lohe, International Conference on shot peening, Tokyo Japan, 10, 205 (2008).
  11. Y. Sekine and H. Soyama, J. Surf. Sci. Tech., 203, 2254 (2009).
  12. H. Soyama and N. Yamada, Mater. lett., 62, 3564 (2008). https://doi.org/10.1016/j.matlet.2008.03.055
  13. C. H. Tang, F. T. Cheng, and H. C. Man. Mater. sci. Eng., 373, 195 (2004). https://doi.org/10.1016/j.msea.2004.01.016
  14. Masazumi Okido, Ryoichi Ichino, Seong-Jong Kim, and Seok-Ki Jang, Transactions Nonferrous Metals Society of China, 19, 892 (2009). https://doi.org/10.1016/S1003-6326(08)60372-6
  15. C. Deslouls, D. Festy, O. Gil, G. Ruis, S. Touzain, and B. Tribollet, Electrochim. Acta, 43, 1891 (1998). https://doi.org/10.1016/S0013-4686(97)00303-4