DOI QR코드

DOI QR Code

메탄/공기 예혼합화염의 동역학적 거동과 정상초음파의 교반

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame

  • 서항석 (부경대학교 대학원 에너지시스템공학과) ;
  • 이상신 (부경대학교 대학원 에너지시스템공학과) ;
  • 김정수 (부경대학교 기계공학과)
  • 투고 : 2012.04.06
  • 심사 : 2012.05.22
  • 발행 : 2012.06.01

초록

정상초음파의 교반이 메탄/공기 예혼합화염의 동역학적 거동에 미치는 영향을 규명하는 실험 결과를 본 연구에서 제시한다. 슐리렌 기법을 이용하여 전파하는 화염을 가시화하였고, 이미지 후처리를 통해 정상초음파 유무에 따른 화염선단의 전파속도를 상세히 관찰하였다. 전파속도는 이론당량비에서 정상 초음파가 교반하는 경우에 크게 증가하였으며, 당량비가 연소 상한계 혹은 연소 하한계로 벗어남에 따라 교반의 효과는 감소하였다. 정상초음파장은 화염 구조의 왜곡을 동반하고, 그 변이 형상은 교반하는 초음파장의 특성에 전적으로 종속하였다.

This study has been conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame was caught by high-speed Schlieren images, through which local flame velocities of the moving front were analyzed in unprecedent detail. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without agitation at the stoichiometric ratio: the velocity enhancement diminishes as the equivalence ratio approaches upper flammability limit or lower flammability limit. Also, vertical locations of the wave-affected frontal distortions do not vary appreciably, unless the propagating-mode characteristics (pressure amplitude and driving frequency) of ultrasonic standing wave were not changed.

키워드

참고문헌

  1. Ellis, O. C. and De, C., "Flame Movement in Gasous Explosive Mixtures (Part 7)," Fuel in Science and Practice 7, 1928, pp.502-508
  2. Guenoche, H., Nonsteady Flame Propagation, Markstein, G. H. Ed., Pergamon, New York, 1964, pp.107-176
  3. Clanet, C. and Searby, G., "On the 'Tulip Flame' Phenomenon," Combustion and Flame, Vol. 105, Issues 1-2, 1996, pp.225-238 https://doi.org/10.1016/0010-2180(95)00195-6
  4. Gonzalez, M., "Acoustic Instability of a Premixed Flame Propagating in a Tube," Combustion and Flame, Vol. 107, No. 3, 1996, pp.245-259 https://doi.org/10.1016/S0010-2180(96)00069-7
  5. Matalon, M. and Metzener, P., "The Propagation of Premixed Flames in Closed Tubes," J. Fluid Mech., Vol. 336, 1997, pp.331-350 https://doi.org/10.1017/S0022112096004843
  6. Kaltayev, A. K., Riedel, U. R., and Warnatz, J., "The Hydrodynamic Structure of a Methane-Air Tulip Flame," Combust. Sci. Tech., Vol. 158, No. 1, 2000, pp.53-69 https://doi.org/10.1080/00102200008947327
  7. Dunn-Rankin, D. and Sawyer, R. F., "Tulip Flames: Change in Shape of Premixed Flames Propagating in Closed Tubes," Exp. Fluids, Vol. 24, No. 2, 1998, pp.130-140 https://doi.org/10.1007/s003480050160
  8. 강상훈, 백승욱, 임홍근, "열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구," 한국추진공학회지, 제9권, 제3호, 2005, pp.101-119
  9. Bychkov, V. V. and Liberman, M. A., "Dynamics and Stability of Premixed Flames," Physics Reports, Vol. 325, Issues 4-5, 2000, pp.115-238 https://doi.org/10.1016/S0370-1573(99)00081-2
  10. Bychkov, V. V. and Liberman, M. A., "Stability of a Flame in a Closed Chamber," Physical Review Letters, Vol. 78, No. 7, 1997, pp.1371-1374 https://doi.org/10.1103/PhysRevLett.78.1371
  11. Matalon, M., "Flame Dynamics," Proc. Combust. Inst., Vol. 32, Issue 2, 2009, pp.57-82 https://doi.org/10.1016/j.proci.2008.08.002
  12. Annaswamy, A. M. and Ghoniem, A. F., "Active Control of Combustion Instability: Theory and Practice," IEEE Control Syst, Mag., Vol. 22, Issue 6, 2002, pp.37-54 https://doi.org/10.1109/MCS.2002.1077784
  13. Hayashi, A. K., Sato, H., Endo, T., Yasunami, Y., Yoshimi, S., Ogawa, S., Ikame, M., Kishi, T., Hiraoka, K., Harumi, K., and Oka, H., "Analysis of Unstable Phenomena in Premixed Flame Burners and Their Active Control," Proc. 4th Symp. Smart Control of Turbulence, 2003, pp.173-182
  14. 서항석, 이상신, 김정수, "정상 초음파장의 간섭에 의한 메탄/공기 예혼합화염의 구조변이," 한국추진공학회지, 제15권, 제6호, 2011, pp.1-6
  15. Seo, H. S., Lee, S. S., and Kim, J. S., "Influence of an Ultrasonic Standing Wave on Spreading of Methane/Air Premixed Flame," AJCPP2012-111, 2012

피인용 문헌

  1. A Schlieren-photographic Visualization of the Methane/Air Premixed Flame Propagating inside a Rectangular Tube Locally-perturbed by an Ultrasonic Standing Wave vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.043