DOI QR코드

DOI QR Code

결정립 성장을 고려한 초소성 성형공정의 유한요소해석(I)

Finite Element Analysis of Superplastic Forming Processes Considering Grain Growth (I)

  • 김용관 (충남대학교 기계설계공학과 대학원) ;
  • 송재선 (대구기계부품연구원 차세대금형기술혁신센터) ;
  • 김용환 (충남대학교 기계설계공학과)
  • 투고 : 2011.07.29
  • 심사 : 2012.02.03
  • 발행 : 2012.06.01

초록

Finite element simulations were conducted to investigate the influence of grain growth in the superplastic blow forming process. A microstructure-based constitutive model considering grain growth effects is proposed and used in the simulations. Also, a grain growth rate equation accounting for both static and dynamic grain growth is implemented. The simulations were made using a 2D plane-strain model for constrained blow forming and an axisymmetric model for free bulging. These two models showed different features during the forming stages. However, the forming pressure-time curve and the thickness distribution obtained by both simulations explained well the deformation hardening induced by the grain growth during superplastic forming. This study shows that grain growth is an important factor in determining the material behavior during superplastic deformation.

키워드

참고문헌

  1. S. S. Hong, M. H. Kim, Y. H. Kim, 1995, Analysis of Superplastic Forming Processes using Finite Element Method, Trans. Kor. Soc. Mech. Eng., Vol. 19, No. 6, pp. 1411-1421.
  2. A. J. Barnes, 2007, Superplastic Forming 40 Years and Still Growing, J. Mater. Eng. Perform., Vol. 14, No. 4, pp. 440-454.
  3. J. M. Lee, S. S. Hong, Y. H. Kim, 1999, Blank Design for Optimized Thickness Distribution for Axi-Symmetric Superplastic Blow Forming, Trans. Mater. Process., Vol. 8, No. 1, pp. 92-100.
  4. J. S. Song, Y. K. Kang, S. S. Hong, Y. N. Kwon, J. H. Lee, Y. H. Kim, 2007, Process Design of Superplastic Forming/Diffusion Bonding by using Design of Experiment, Trans. Mater. Process., Vol. 16, No. 2, pp. 144-149. https://doi.org/10.5228/KSPP.2007.16.2.144
  5. A. K. Ghosh, C. H. Hamilton, 1979, Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy, Metall. Trans. A, Vol. 10, No. 6, pp. 699-706. https://doi.org/10.1007/BF02658391
  6. D. H. Shin, U. Y. Choi, Y. J. Joo, S. C. Maeng, 1997, Cavity Formation in a Superplastic 7075 Al Alloy, J. Kor. Inst. Met. Mater., Vol. 35, No. 9, pp. 1102-1108.
  7. C. H. Hamilton, H. M. Zbib, C. H. Johnson, S. K. Richter, 1991, Superplasticity in Advanced Materials(eds. S. Hori, M. Tokizame, and N. Furushiro), The Japan Society for Research on Superplasticity, Osaka, Japan, pp. 127-133.
  8. J. H. Lee, C. S. Lee, 1997, A Study on the Bulge Forming Process of Superplastic Ti-6Al-4V Alloy, J. Kor. Inst. Met. Mater., Vol. 35, No. 10, pp. 1325-1331.
  9. T. W. Kim, 2001, Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure, Trans. Kor. Soc. Mech. Eng. A, Vol. 25, No.12, pp. 1933-1943.
  10. H. Tan, P. Gao, J. Lian, 2001, Microstructural Modeling and Numerical Analysis for the Superplastic Forming Process, Mater. Manuf. Processes, Vol. 16, No.3, pp. 331-340. https://doi.org/10.1081/AMP-100107378
  11. J. Lin, F. P. E. Dunne, 2001, Modeling Grain Growth Evolution and Necking in Superplastic Blow-Forming, Int. J. Mech. Sci., Vol. 43, No. 3, pp. 595-609. https://doi.org/10.1016/S0020-7403(00)00055-2
  12. B. H. Cheong, J. Lin, A. A. Ball, 2003, Modeling the Effects of Grain-Size Gradients on Necking in Superplastic Forming, J. Mater. Process. Technol., Vol. 134, No. 1, pp. 10-18. https://doi.org/10.1016/S0924-0136(02)00216-9
  13. M. A. Nazzale, M. K. Khraisheh, B. M. Darras, 2004, Finite Element Modeling and Optimization of Superplastic Forming using Variable Strain Rate Approach, J. Mater. Eng. Perform., Vol. 13, No. 6, pp. 691-699. https://doi.org/10.1361/10599490421321
  14. A. K. Ghosh, C. H. Hamilton, 1982, Influences of Material Parameters and Microstructure on Superplastic Forming, Metall. Mater. Trans. A, Vol. 13, No. 5, pp. 733-743. https://doi.org/10.1007/BF02642386
  15. M. A. Clark, T. H. Alden, 1973, Deformation Enhanced Grain Growth in a Superplastic Sn-1% Bi Alloy, Acta Metall., Vol. 21, No. 9, pp. 1195-1206. https://doi.org/10.1016/0001-6160(73)90160-0
  16. C. H. Caceres, D. S. Wilkinson, 1984, Large Strain Behavior of a Superplastic Copper Alloy-I. Deformation, Acta Metall., Vol. 32, No. 3, pp. 415-422. https://doi.org/10.1016/0001-6160(84)90115-9
  17. S. Richter, C. H. Hamilton, 1993, Deformation Enhanced Grain Growth in a Two Phase Titanium Alloy, Mater. Sci. Forum, Vol. 113-115, pp. 195-200. https://doi.org/10.4028/www.scientific.net/MSF.113-115.195
  18. T. K. Ha, J. R. Son, Y. W. Chang, 1998, Superplastic Deformation Behavior of a Zn-0.3wt.%Al Alloy, J. Kor. Inst. Met. Mater., Vol. 36, No. 8, pp. 1242-1248.
  19. J. S. Kim, J. H. Kim, C. G. Park, C. S. Lee, 1998, Microstructural Analysis on the Creep and Superplastic Deformation of Two-Phase Ti-6Al-4V Alloy, J. Kor. Inst. Met. Mater., Vol. 36, No. 7, pp. 1046-1054.
  20. O. N. Senkov, M. M. Myshlyaev, 1986, Grain Growth in a Superplastic Zn-22% Al Alloy, Acta Metall., Vol. 34, No. 1, pp. 97-106. https://doi.org/10.1016/0001-6160(86)90236-1
  21. Y. H. Kim, S. S. Hong, J. S. Lee, R. H. Wagoner, 1996, Analysis of Superplastic Forming Processes using a Finite-Element Method, J. Mater. Process. Technol., Vol. 62, No. 1-3, pp. 90-99. https://doi.org/10.1016/0924-0136(95)02223-6
  22. M. Bellet, E. Massoni, J. L. Chenot, 1990, Numerical Simulation of Thin Sheet Forming Processes by the Finite Element Method, Eng. Comput., Vol. 7, No. 1, pp. 21-31. https://doi.org/10.1108/eb023790
  23. J. H. Yoon, H. S. Lee, Y. S. Jang, Y. M. Yi, 2003, Theoretical Analysis for Prediction of Thickness Variation in Superplastic Forming Process of Spherical Pressure Vessel, Aerosp. Technol., Vol. 2, No. 2, pp. 133-141.
  24. A. A. Kruglov, F. U. Enikeev, R. Ya. Lutfullin, 2002, Superplastic Forming of a Spherical Shell out a Welded Envelope, Mater. Sci. Eng. A, Vol. 323, No. 1-2, pp. 416-426. https://doi.org/10.1016/S0921-5093(01)01376-4
  25. D. H. Bae, A. K. Ghosh, 2000, Grain Size and Temperature Dependence of Superplastic Deformation in an Al-Mg Alloy under Isostructural Condition, Acta Metall., Vol. 48, No. 6, pp. 1207-1224.