Honam Mathematical J. **34** (2012), No. 2, pp. 263–271 http://dx.doi.org/10.5831/HMJ.2012.34.2.263

COMPLICATED BCC-ALGEBRAS AND ITS DERIVATION

KEUM SOOK SO* AND SUN SHIN AHN

Abstract. Any BCK-ideal of a BCC-algebra can be decomposed into the union of some sets. The notion of a complicatedness and a derivation for a BCC-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras : BCK-algebras and BCI-algebras ([5,6]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

The class of all BCK-algebras is a quasi-variety. K. Iséki posed an interesting problem (solved by A. Wronski [8]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori [7] introduced a notion of BCC-algebras, W. A. Dudek [1,2] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [4], J. Hao introduced the concept of ideals in a BCC-algebra and studied some related properties.

In this paper, we show that any BCK-ideal of a BCC-algebra can be decomposed into the union of some sets. We also introduce the notion of a complicated BCC-algebra and a derivation on a BCC-algebra and investigate some related properties.

2. Preliminaries

By a *BCC-algebra* ([7]) we mean a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: for all $x, y, z \in X$,

Received April 9, 2012. Accepted May 22, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. BCC-algebras, complicated BCC-algebras, derivation. * Corresponding author.

 $^{^{\}ast}$ This research was supported by Hallym University Research Fund 2011(HRF-201112-003)

 $(a_1) ((x * y) * (z * y)) * (x * z) = 0,$ $(a_2) 0 * x = 0,$ $(a_3) x * 0 = x,$ $(a_4) x * y = 0 and y * x = 0 imply x = y.$

For brevity, we also call X a *BCC*-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0. " \leq " is called the *BCC*-order on X. Then \leq is a partial ordering on X. A non-empty subset S of a *BCC*-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$.

In a *BCC*-algebra, the following hold: for any $x, y, z \in X$,

 $\begin{array}{ll} (b_1) & x * x = 0, \\ (b_2) & (x * y) * x = 0, \\ (b_3) & x \leq y \Rightarrow x * z \leq y * z, \\ (b_4) & x \leq y \Rightarrow z * y \leq z * x. \end{array}$

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which are not BCK-algebras (cf. [2]). Note that a BCC-algebra is a BCK-algebra if and only if it satisfies:

 $(b_5) (x * y) * z = (x * z) * y.$

Definition 2.1 ([4]). Let X be a *BCC*-algebra and $\emptyset \neq I \subseteq X$. I is called an *ideal* (or a *BCK-ideal*) of X if it satisfies the following conditions:

- (i) $0 \in I$;
- (ii) $x * y, y \in I$ imply $x \in I$, for any $x, y \in X$.

Theorem 2.2 ([4]). In a BCC-algebra X, every ideal of X is a subalgebra of X.

Definition 2.3 ([3]). Let X be a *BCC*-algebra and $\emptyset \neq I \subseteq X$. I is called a *BCC-ideal* of X if it satisfies the following conditions:

(i) $0 \in I;$

(ii) $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$.

Lemma 2.4 ([3]). In a BCC-algebra X, any BCC-ideal of X is an ideal of X.

Corollary 2.5 ([3]). Any BCC-ideal of a BCC-algebra X is a subalgebra of X.

Remark. In a *BCC*-algebra, a subalgebra need not be an ideal and an ideal need not be a *BCC*-ideal, in general (see [3,4]).

Lemma 2.6. An ideal I of a BCC-algebra X has the following property:

$$(\forall x \in X)(\forall y \in A)(x \le y \Rightarrow x \in A).$$

3. Complicated *BCC*-algebras

For any *BCC*-algebra X and $x, y \in X$, we denote

$$A(x, y) := \{ z \in X | (z * x) * y = 0 \}.$$

Note that A(x, y) is a non-empty set, since $0, x, y \in A(x, y)$.

Theorem 3.1. If I is an ideal of a BCC-algebra X, then $I = \bigcup_{x,y \in I} A(x,y)$.

Proof. Let I be an ideal of a BCC-algebra X. If $z \in I$, then (z*z)*0 = 0*0 = 0. Hence $z \in A(z, 0)$. It follows that

$$I \subseteq \bigcup_{z \in I} A(z, 0) \subseteq \bigcup_{x, y \in I} A(x, y).$$

Let $z \in \bigcup_{x,y \in I} A(x,y)$. Then there exist $a, b \in I$ such that $z \in A(a,b)$, so that $(z * a) * b = 0 \in I$. Since I is an ideal of X, we have $z \in I$. Thus $\bigcup_{x,y \in I} A(x,y) \subseteq I$, and consequently $I = \bigcup_{x,y \in I} A(x,y)$.

Corollary 3.2. If I is an ideal of a BCC-algebra X, then $I = \bigcup_{x \in I} A(x, 0)$.

Proof. By Theorem 3.1, we have

$$\bigcup_{x \in I} A(x, 0) \subseteq \bigcup_{x, y \in I} A(x, y) = I.$$

If $x \in I$, then $x \in A(x,0)$ since (x * x) * 0 = 0 * 0 = 0. Hence $I \subseteq \bigcup_{x \in I} A(x,0)$. This competes the proof.

We give an example satisfying Theorem 3.1 and Corollary 3.2. See the following example.

Example 3.3. Let $X := \{0, 1, 2, 3, 4\}$ be a *BCC*-algebra ([3]) which is not a *BCK*-algebra with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 3 \\ 3 \end{array} $	4	3	0

Then $I := \{0, 1\}$ is an ideal of X. Moreover, it is easy to check that I = A(0,0) = A(0,1) = A(1,0) = A(1,1).

Theorem 3.4. Let I be a non-empty subset of a BCC-algebra X such that $0 \in I$ and $I = \bigcup_{x,y \in I} A(x,y)$. Then I is an ideal of X.

Proof. Let $x * y, y \in I = \bigcup_{x,y \in I} A(x,y)$. Since (x * y) * (x * y) = 0, we have $x \in A(y, x * y)$. Hence I is an ideal of X. \Box

Combining Theorems 3.1 and 3.4, we have the following corollary.

Corollary 3.5. Let X be a BCC-algebra. Then I is an ideal of X if and only if $I = \bigcup_{x,y \in I} A(x,y)$.

Definition 3.6. Let X be a *BCC*-algebra. Given $x, y \in X$, we define a set

$$A(x, y) := \{ z \in X | (z * x) * y = 0 \}.$$

X is said to be *complicated* if for any $x, y \in X$, the set A(x, y) has the greatest element.

The greatest element of A(x, y) is denoted by x + y.

Example 3.7. Let $X := \{0, a, b, c\}$ be a *BCC*-algebra with the following Cayley table:

Then X is a complicated BCC-algebra.

Theorem 3.8. Let X be a complicated BCC-algebra and let $a, b \in X$. Then the set

$$\mathcal{H}(a,b) := \{ x \in X | a \le b + x \}$$

has the least element, and it is a * b.

Proof. The inequality $a * b \leq a * b$ implies that $a \leq b + (a * b)$ and so $a * b \in \mathcal{H}(a, b)$. Let $z \in \mathcal{H}(a, b)$. Then $a \leq b + z$, which implies from (b_3) and Definition 3.6 that $a * b \leq (b + z) * b \leq z$. Hence a * b is the least element of $\mathcal{H}(a, b)$.

Proposition 3.9. Let X be a complicated BCC-algebra. Then for any $x, y, z \in X$, the following hold:

- (i) $(\forall a, b \in X)(a \le a + b, b \le a + b),$
- (ii) $(\forall a \in X)(a+0=0=0+a),$
- (iii) $(\forall a, b, c \in X)(a \le b \Rightarrow a + c \le b + c).$

Proof. (i) and (ii) are straightforward. (iii) Let $a, b, c \in X$ with $a \leq b$. It follows from (b_4) that $(a + c) * b \leq b$ $(a+c) * a \le c$. Hence we have $(a+c) * b \le c$. Thus $a+c \le b+c$.

Proposition 3.10. Let X be a BCC-algebra with (a * b) * b = a * bfor any $a, b \in X$. Then

(i) $(\forall a, b \in X)(a \le b \Rightarrow a + b = b),$

(ii) $(\forall a \in X)(a \le a \Rightarrow a + a = a).$

Proof. (i) Let $a, b \in X$ with $a \leq b$. Using (b_4) , we have $(a + b) * b \leq b$ $(a+b) * a \le b$ and so $(a+b) * b \le b$. Hence 0 = ((a+b) * b) * b = (a+b) * band so $a + b \le b$. Since $b \le a + b$ for all $a, b \in X$, we have a + b = b. \Box

We provide some characterizations of ideals in a complicated BCCalgebra.

Proposition 3.11. Let A be a non-empty subset of a complicated BCC-algebra X. If A is an ideal of X, then it satisfies the following conditions:

- (i) $(\forall x \in A)(\forall y \in X)(y \le x \Rightarrow y \in A).$
- (ii) $(\forall x, y \in A) (\exists z \in A \text{ with } x \leq z, y \leq z).$

Proof. Assume that A is an ideal of X. Let $x \in A, y \in X$ with $y \leq x$. Then y * x = 0. Since I is an ideal of X, we have $y \in A$. (i) is valid.

Let $x, y \in A$. Since $(x + y) * x \leq y$ and $y \in A$, it follows from (i) that $(x+y) * x \in A$ so that $x+y \in A$ because A is an ideal of X. If we take z := x + y, then $x \le z$ and $y \le z$ by Proposition 3.9 (i). This completes the proof.

Theorem 3.12. Let A be a non-empty subset of a complicated BCC-algebra X. Then A is an ideal of X if and only if it satisfies the following conditions:

(i) $(\forall x \in A)(\forall y \in X)(y \le x \Rightarrow y \in A).$

(ii) $(\forall x, y \in A)(x, y \in A \Rightarrow x + y \in A).$

Proof. The necessity follows from Proposition 3.11.

Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Obviously $0 \in A$ by (i) and (a_2) . Let $x, y \in X$ satisfying $y \in A$ and $x * y \in A$. Then $y + (x * y) \in A$ by (ii). Since $x \leq y + (x * y)$ by Theorem 3.8, it follows from (i) that $x \in A$. Thus A is an ideal of X.

4. A derivation in *BCC*-algebras

Keum Sook So and Sun Shin Ahn

We introduce the notion of a derivation in BCC-algebras as follows.

Definition 4.1. Let X be a complicated *BCC*-algebra. A map $d: X \to X$ is said to be a *derivation* on X if it satisfies the following condition

$$d(x \wedge y) = (dx \wedge y) + (x \wedge dy)$$

where $x \wedge y = y * (y * x)$, for all $x, y \in X$.

We often abbreviate d(x) to dx.

Example 4.2. (1) Let $X := \{0, a, b, c\}$ be a complicated *BCC*-algebra as Example 3.7. Define a function d on X by

$$dx = \begin{cases} 0 & \text{if } x = 0, b \\ c & \text{if } x = a, c \end{cases}$$

Then d is not a derivation on X since $d(c \wedge b) = d(b * (b * c)) = d(b * 0) = d(b) = 0 \neq b = b + 0 = (b * 0) + (0 * 0) = (b * (b * c)) + (0 * (0 * c)) = c \wedge b + c \wedge 0 = (dc \wedge b) + (c \wedge db).$

(2) Define a function d on X in Example 3.7 by

$$dx = \begin{cases} 0 & \text{if } x = 0, b \\ a & \text{if } x = a, c \end{cases}$$

Then it is easy to see that d is a derivation on X.

Definition 4.3. A *BCC*-algebra X is said to be *commutative* if for any $x, y \in X$, $x \wedge y = y \wedge x$.

Example 4.4. (1) Let $X := \{0, a, b, c\}$ be a *BCC*-algebra as Example 3.7. Then X is a commutative *BCC*-algebra with (x * y) * y = x * y for all $x, y \in X$.

(2) Let $X := \{0, 1, 2, 3, 4\}$ be a set with the following Cayley table:

Then X is a *BCC*-algebra which is not a *BCK*-algebra satisfying (x * y) * y = x * y for all $x, y \in X$, but not commutative, since $3 * (3 * 2) = 3 * 1 = 3 \neq 2 = 2 * 0 = 2 * (2 * 3)$.

(3) Let $X := \{0, 1, 2, 3\}$ be a *BCC*-algebra with the following Cayley table:

*	0	1	2	3
0	0	0	0	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	0	0	0
2	2	1	0	0
3	3	2	1	0

Then X is commutative, but not satisfying (x * y) * y = x * y for all $x, y \in X$, since $(3 * 2) * 2 = 1 * 2 = 0 \neq 1 = 3 * 2$.

Proposition 4.5. Let X be a complicated commutative BCCalgebra with (x * y) * y = x * y for any $x, y \in X$. Then the following hold:

- (i) $dx = dx \land x \le x$ for all $x \in X$,
- (ii) $d(A(a,b)) \subseteq A(a,b),$
- (iii) If I is an ideal of a BCC-algebra X, then $d(I) \subseteq I$.

Proof. (i) Since $dx = d(x \wedge x) = (dx \wedge x) + (x \wedge dx) = dx \wedge x + dx \wedge x = dx \wedge x = x * (x * dx) \leq x$, we have $dx = dx \wedge x \leq x$. (ii) Let $z \in A(a, b)$. Then $z * a \leq b$. Since $dz \leq z$, using (b_3) , we have $dz * a \leq z * a \leq b$. Hence $dz \in A(a, b)$. Therefore $d(A(a, b)) \subseteq A(a, b)$. (iii) Let I be an ideal of a *BCC*-algebra X. Let $x \in I$. From (i), we get $dx \leq x$. Hence $dx * x = 0 \in I$. Since I is an ideal of $X, dx \in I$. Thus $d(I) \subseteq I$.

Corollary 4.6. Let X be a complicated commutative BCC-algebra with (x * y) * y = x * y for any $x, y \in X$. Then

- (i) $d(a+b) \le a+b$
- (ii) $d^2x = dx$.

Proof. (i) Let x := a + b in Proposition 4.5 (i). (ii) Using Proposition 4.5 (i), we obtain $d^2x = d(dx) = d(dx \wedge x) = (d^2x \wedge x) + dx \wedge dx = d^2x + dx = dx$.

Theorem 4.7. Let X be a complicated commutative BCC-algebra with (x * y) * y = x * y for any $x, y \in X$. Then

$$dx \wedge dy \le d(x \wedge y) \le dx + dy.$$

Proof. Since $dy \leq y$, by (b_4) , we have $dx * y \leq dx * dy$ and hence $dx * (dx * dy) \leq dx * (dx * y)$, i.e., $dx \wedge dy \leq dx \wedge y$. Similarly, we obtain

 $dx \wedge dy \leq dy \wedge x$. Hence $dx \wedge dy \leq dx \wedge y + dy \wedge x = d(x \wedge y)$. Since $dx \wedge y = dx * (dx * y) \leq dx$, we obtain

$$d(x \wedge y) = dx \wedge y + x \wedge dy \le dx + x \wedge dy \le dx + dy.$$

Therefore we have $dx \wedge dy \leq d(x \wedge y) \leq dx + dy$.

Definition 4.8. Let X be a complicated *BCC*-algebra. A derivation d on X is said to be *isotone* if $x \leq y$ implies $dx \leq dy$ for all $x, y \in X$.

Proposition 4.9. Let X be a complicated commutative BCCalgebra and let d be a derivation on X. Then the following hold: for all $x, y \in X$

(i) if $d(x \wedge y) = dx \wedge dy$, then d is an isotone derivation.

(ii) if d(x+y) = dx + dy, then d is an isotone derivation.

Proof. (i) Let $x, y \in X$ with x * y = 0. Then $x \wedge y = x * (x * y) = x * 0 = x$. Hence $dx = d(x \wedge y) = dx \wedge dy \leq dy$. Thus d is an isotone derivation.

(ii) From Proposition 3.10 (i), we have x + y = y. Hence dy = d(x+y) = dx + dy and so $dx \le dy$. Thus d is an isotone derivation.

Theorem 4.10. Let X be a complicated commutative BCC-algebra with (x*y)*y = x*y for any $x, y \in X$. Then the following are equivalent:

(i) d is the identity derivation,

(ii) d is one-to-one,

(iii) d is onto.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are straightforward.

(ii) \Rightarrow (i): Assume that d is not the identity derivation. Let d be a one-to-one function. If there exists an element $a \in X$ with $da \neq a$, then da < a. Denote $a_1 := da$. Then $a_1 < a$. Hence $da_1 = d(a_1 \land a) = (da_1 \land a) + (a_1 \land da) = da_1 \land a + a_1 = a_1$, i.e., $da_1 = a_1 = da$, which implies $a_1 = a$, a contradiction. Thus d is the identity derivation.

(iii) \Rightarrow (i): Assume that d is onto, i.e., dX = X. For any $x \in X$, there exists $y \in Y$ with x = dy. Hence, using Corollary 4.6, we obtain $dx = d(dy) = d^2y = dy = x$. Thus d is the identity derivation. \Box

References

- W. A. Dudeck, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Acaddemia Sinica, 20(1992), 129-136.
- [2] W. A. Dudeck, On proper BCC-algebras, Bull. Inst. Math. Acaddemia Sinica, 20(1992), 137-150.
- [3] W. A. Dudeck and X. Zhang, On ideals and congruences in BCC-algebras, Czecho Math. J., 48(123) (1998), 21-29.
- [4] J. Hao, Ideal Theory of BCC-algebras, Sci. Math. Japo., 3 (1998), 373-381.
- [5] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8 (1980), 125-130.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23 (1978), 27-23.
- [7] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29 (1984), 391-394.
- [8] A. Wroński, BCK-algebras do not form a variety, Math. Japon., 28 (1983), 211-213.

Keum Sook So Department of Mathematics, Hallym University, Chuncheon 200-702, Korea. E-mail: ksso@hallym.ac.kr

Sun Shin Ahn Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: sunshine@dongguk.edu