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COMPLICATED BCC-ALGEBRAS AND ITS

DERIVATION

Keum Sook So∗ and Sun Shin Ahn

Abstract. Any BCK-ideal of a BCC-algebra can be decomposed
into the union of some sets. The notion of a complicatedness and a
derivation for a BCC-algebra is introduced and some related prop-
erties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras :
BCK-algebras and BCI-algebras ([5,6]). It is known that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras.

The class of all BCK-algebras is a quasi-variety. K. Iséki posed
an interesting problem (solved by A. Wronski [8]) whether the class of
BCK-algebras is a variety. In connection with this problem, Y. Komori
[7] introduced a notion of BCC-algebras, W. A. Dudek [1,2] redefined
the notion of BCC-algebras by using a dual form of the ordinary defi-
nition in the sense of Y. Komori. In [4], J. Hao introduced the concept
of ideals in a BCC-algebra and studied some related properties.

In this paper, we show that any BCK-ideal of a BCC-algebra can be
decomposed into the union of some sets. We also introduce the notion
of a complicated BCC-algebra and a derivation on a BCC-algebra and
investigate some related properties.

2. Preliminaries

By a BCC-algebra ([7]) we mean a non-empty set X with a constant
0 and a binary operation “ ∗ ” satisfying the following axioms: for all
x, y, z ∈ X,
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(a1) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(a2) 0 ∗ x = 0,
(a3) x ∗ 0 = x,
(a4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

For brevity, we also call X a BCC-algebra. In X we can define a
binary operation “ ≤ ” by x ≤ y if and only if x ∗ y = 0. “ ≤ ” is called
the BCC-order on X. Then ≤ is a partial ordering on X. A non-empty
subset S of a BCC-algebra X is called a subalgebra of X if x ∗ y ∈ S for
all x, y ∈ S.

In a BCC-algebra, the following hold: for any x, y, z ∈ X,

(b1) x ∗ x = 0,
(b2) (x ∗ y) ∗ x = 0,
(b3) x ≤ y ⇒ x ∗ z ≤ y ∗ z,
(b4) x ≤ y ⇒ z ∗ y ≤ z ∗ x.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras
which are not BCK-algebras (cf. [2]). Note that a BCC-algebra is a
BCK-algebra if and only if it satisfies:

(b5) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Definition 2.1 ([4]). Let X be a BCC-algebra and ∅ 6= I ⊆ X.
I is called an ideal (or a BCK-ideal) of X if it satisfies the following
conditions:

(i) 0 ∈ I;
(ii) x ∗ y, y ∈ I imply x ∈ I, for any x, y ∈ X.

Theorem 2.2 ([4]). In a BCC-algebra X, every ideal of X is a
subalgebra of X.

Definition 2.3 ([3]). Let X be a BCC-algebra and ∅ 6= I ⊆ X. I is
called a BCC-ideal of X if it satisfies the following conditions:

(i) 0 ∈ I;
(ii) (x ∗ y) ∗ z ∈ I and y ∈ I imply x ∗ z ∈ I.

Lemma 2.4 ([3]). In a BCC-algebra X, any BCC-ideal of X is an
ideal of X.

Corollary 2.5 ([3]). Any BCC-ideal of a BCC-algebra X is a sub-
algebra of X.

Remark. In a BCC-algebra, a subalgebra need not be an ideal and
an ideal need not be a BCC-ideal, in general (see [3,4]).
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Lemma 2.6. An ideal I of a BCC-algebra X has the following
property:

(∀x ∈ X)(∀y ∈ A)(x ≤ y ⇒ x ∈ A).

3. Complicated BCC-algebras

For any BCC-algebra X and x, y ∈ X, we denote

A(x, y) := {z ∈ X|(z ∗ x) ∗ y = 0}.
Note that A(x, y) is a non-empty set, since 0, x, y ∈ A(x, y).

Theorem 3.1. If I is an ideal of a BCC-algebra X, then I =
∪x,y∈IA(x, y).

Proof. Let I be an ideal of a BCC-algebra X. If z ∈ I, then (z∗z)∗0 =
0 ∗ 0 = 0. Hence z ∈ A(z, 0). It follows that

I ⊆ ∪z∈IA(z, 0) ⊆ ∪x,y∈IA(x, y).

Let z ∈ ∪x,y∈IA(x, y). Then there exist a, b ∈ I such that z ∈ A(a, b),
so that (z ∗ a) ∗ b = 0 ∈ I. Since I is an ideal of X, we have z ∈ I. Thus
∪x,y∈IA(x, y) ⊆ I, and consequently I = ∪x,y∈IA(x, y).

Corollary 3.2. If I is an ideal of a BCC-algebra X, then I =
∪x∈IA(x, 0).

Proof. By Theorem 3.1, we have

∪x∈IA(x, 0) ⊆ ∪x,y∈IA(x, y) = I.

If x ∈ I, then x ∈ A(x, 0) since (x ∗ x) ∗ 0 = 0 ∗ 0 = 0. Hence I ⊆
∪x∈IA(x, 0). This competes the proof.

We give an example satisfying Theorem 3.1 and Corollary 3.2. See
the following example.

Example 3.3. Let X := {0, 1, 2, 3, 4} be a BCC-algebra ([3]) which
is not a BCK-algebra with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 1 0 0
4 4 3 4 3 0

Then I := {0, 1} is an ideal of X. Moreover, it is easy to check that
I = A(0, 0) = A(0, 1) = A(1, 0) = A(1, 1).



266 Keum Sook So and Sun Shin Ahn

Theorem 3.4. Let I be a non-empty subset of a BCC-algebra X
such that 0 ∈ I and I = ∪x,y∈IA(x, y). Then I is an ideal of X.

Proof. Let x ∗ y, y ∈ I = ∪x,y∈IA(x, y). Since (x ∗ y) ∗ (x ∗ y) = 0, we
have x ∈ A(y, x ∗ y). Hence I is an ideal of X.

Combining Theorems 3.1 and 3.4, we have the following corollary.

Corollary 3.5. Let X be a BCC-algebra. Then I is an ideal of X
if and only if I = ∪x,y∈IA(x, y).

Definition 3.6. Let X be a BCC-algebra. Given x, y ∈ X, we
define a set

A(x, y) := {z ∈ X|(z ∗ x) ∗ y = 0}.
X is said to be complicated if for any x, y ∈ X, the set A(x, y) has the
greatest element.

The greatest element of A(x, y) is denoted by x + y.

Example 3.7. Let X := {0, a, b, c} be a BCC-algebra with the
following Cayley table:

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Then X is a complicated BCC-algebra.

Theorem 3.8. Let X be a complicated BCC-algebra and let a, b ∈
X. Then the set

H(a, b) := {x ∈ X|a ≤ b + x}
has the least element, and it is a ∗ b.

Proof. The inequality a ∗ b ≤ a ∗ b implies that a ≤ b + (a ∗ b) and
so a ∗ b ∈ H(a, b). Let z ∈ H(a, b). Then a ≤ b + z, which implies from
(b3) and Definition 3.6 that a ∗ b ≤ (b + z) ∗ b ≤ z. Hence a ∗ b is the
least element of H(a, b).

Proposition 3.9. Let X be a complicated BCC-algebra. Then for
any x, y, z ∈ X, the following hold:

(i) (∀a, b ∈ X)(a ≤ a + b, b ≤ a + b),
(ii) (∀a ∈ X)(a + 0 = 0 = 0 + a),
(iii) (∀a, b, c ∈ X)(a ≤ b⇒ a + c ≤ b + c).
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Proof. (i) and (ii) are straightforward.
(iii) Let a, b, c ∈ X with a ≤ b. It follows from (b4) that (a + c) ∗ b ≤
(a + c) ∗ a ≤ c. Hence we have (a + c) ∗ b ≤ c. Thus a + c ≤ b + c.

Proposition 3.10. Let X be a BCC-algebra with (a ∗ b) ∗ b = a ∗ b
for any a, b ∈ X. Then

(i) (∀a, b ∈ X)(a ≤ b⇒ a + b = b),
(ii) (∀a ∈ X)(a ≤ a⇒ a + a = a).

Proof. (i) Let a, b ∈ X with a ≤ b. Using (b4), we have (a + b) ∗ b ≤
(a+b)∗a ≤ b and so (a+b)∗b ≤ b. Hence 0 = ((a+b)∗b)∗b = (a+b)∗b
and so a+ b ≤ b. Since b ≤ a+ b for all a, b ∈ X, we have a+ b = b.

We provide some characterizations of ideals in a complicated BCC-
algebra.

Proposition 3.11. Let A be a non-empty subset of a complicated
BCC-algebra X. If A is an ideal of X, then it satisfies the following
conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x⇒ y ∈ A).
(ii) (∀x, y ∈ A)(∃z ∈ A with x ≤ z, y ≤ z).

Proof. Assume that A is an ideal of X. Let x ∈ A, y ∈ X with y ≤ x.
Then y ∗ x = 0. Since I is an ideal of X, we have y ∈ A. (i) is valid.

Let x, y ∈ A. Since (x+ y) ∗x ≤ y and y ∈ A, it follows from (i) that
(x+ y) ∗ x ∈ A so that x+ y ∈ A because A is an ideal of X. If we take
z := x+ y, then x ≤ z and y ≤ z by Proposition 3.9 (i). This completes
the proof.

Theorem 3.12. Let A be a non-empty subset of a complicated
BCC-algebra X. Then A is an ideal of X if and only if it satisfies the
following conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x⇒ y ∈ A).
(ii) (∀x, y ∈ A)(x, y ∈ A⇒ x + y ∈ A).

Proof. The necessity follows from Proposition 3.11.
Conversely, let A be a non-empty subset of X satisfying conditions

(i) and (ii). Obviously 0 ∈ A by (i) and (a2). Let x, y ∈ X satisfying
y ∈ A and x ∗ y ∈ A. Then y + (x ∗ y) ∈ A by (ii). Since x ≤ y + (x ∗ y)
by Theorem 3.8, it follows from (i) that x ∈ A. Thus A is an ideal of
X.

4. A derivation in BCC-algebras
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We introduce the notion of a derivation in BCC-algebras as follows.

Definition 4.1. Let X be a complicated BCC-algebra. A map
d : X → X is said to be a derivation on X if it satisfies the following
condition

d(x ∧ y) = (dx ∧ y) + (x ∧ dy)

where x ∧ y = y ∗ (y ∗ x), for all x, y ∈ X.

We often abbreviate d(x) to dx.

Example 4.2. (1) Let X := {0, a, b, c} be a complicated BCC-
algebra as Example 3.7. Define a function d on X by

dx =

{
0 if x = 0, b

c if x = a, c

Then d is not a derivation on X since d(c∧ b) = d(b∗ (b∗ c)) = d(b∗0) =
d(b) = 0 6= b = b + 0 = (b ∗ 0) + (0 ∗ 0) = (b ∗ (b ∗ c)) + (0 ∗ (0 ∗ c)) =
c ∧ b + c ∧ 0 = (dc ∧ b) + (c ∧ db).

(2) Define a function d on X in Example 3.7 by

dx =

{
0 if x = 0, b

a if x = a, c

Then it is easy to see that d is a derivation on X.

Definition 4.3. A BCC-algebra X is said to be commutative if for
any x, y ∈ X, x ∧ y = y ∧ x.

Example 4.4. (1) Let X := {0, a, b, c} be a BCC-algebra as Exam-
ple 3.7. Then X is a commutative BCC-algebra with (x ∗ y) ∗ y = x ∗ y
for all x, y ∈ X.

(2) Let X := {0, 1, 2, 3, 4} be a set with the following Cayley table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 1 0

Then X is a BCC-algebra which is not a BCK-algebra satisfying (x ∗
y) ∗ y = x ∗ y for all x, y ∈ X, but not commutative, since 3 ∗ (3 ∗ 2) =
3 ∗ 1 = 3 6= 2 = 2 ∗ 0 = 2 ∗ (2 ∗ 3).
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(3) Let X := {0, 1, 2, 3} be a BCC-algebra with the following Cayley
table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 1 0

Then X is commutative, but not satisfying (x ∗ y) ∗ y = x ∗ y for all
x, y ∈ X, since (3 ∗ 2) ∗ 2 = 1 ∗ 2 = 0 6= 1 = 3 ∗ 2.

Proposition 4.5. Let X be a complicated commutative BCC-
algebra with (x ∗ y) ∗ y = x ∗ y for any x, y ∈ X. Then the following
hold:

(i) dx = dx ∧ x ≤ x for all x ∈ X,
(ii) d(A(a, b)) ⊆ A(a, b),
(iii) If I is an ideal of a BCC-algebra X, then d(I) ⊆ I.

Proof. (i) Since dx = d(x∧x) = (dx∧x)+(x∧dx) = dx∧x+dx∧x =
dx ∧ x = x ∗ (x ∗ dx) ≤ x, we have dx = dx ∧ x ≤ x.
(ii) Let z ∈ A(a, b). Then z ∗ a ≤ b. Since dz ≤ z, using (b3), we have
dz ∗ a ≤ z ∗ a ≤ b. Hence dz ∈ A(a, b). Therefore d(A(a, b)) ⊆ A(a, b).
(iii) Let I be an ideal of a BCC-algebra X. Let x ∈ I. From (i), we get
dx ≤ x. Hence dx ∗ x = 0 ∈ I. Since I is an ideal of X, dx ∈ I. Thus
d(I) ⊆ I.

Corollary 4.6. Let X be a complicated commutative BCC-algebra
with (x ∗ y) ∗ y = x ∗ y for any x, y ∈ X. Then

(i) d(a + b) ≤ a + b
(ii) d2x = dx.

Proof. (i) Let x := a + b in Proposition 4.5 (i).
(ii) Using Proposition 4.5 (i), we obtain d2x = d(dx) = d(dx ∧ x) =
(d2x ∧ x) + dx ∧ dx = d2x + dx = dx.

Theorem 4.7. Let X be a complicated commutative BCC-algebra
with (x ∗ y) ∗ y = x ∗ y for any x, y ∈ X. Then

dx ∧ dy ≤ d(x ∧ y) ≤ dx + dy.

Proof. Since dy ≤ y, by (b4), we have dx ∗ y ≤ dx ∗ dy and hence

dx ∗ (dx ∗ dy) ≤ dx ∗ (dx ∗ y), i.e., dx∧ dy ≤ dx∧ y. Similarly, we obtain



270 Keum Sook So and Sun Shin Ahn

dx ∧ dy ≤ dy ∧ x. Hence dx ∧ dy ≤ dx ∧ y + dy ∧ x = d(x ∧ y). Since
dx ∧ y = dx ∗ (dx ∗ y) ≤ dx, we obtain

d(x ∧ y) = dx ∧ y + x ∧ dy ≤ dx + x ∧ dy ≤ dx + dy.

Therefore we have dx ∧ dy ≤ d(x ∧ y) ≤ dx + dy.

Definition 4.8. Let X be a complicated BCC-algebra. A derivation
d on X is said to be isotone if x ≤ y implies dx ≤ dy for all x, y ∈ X.

Proposition 4.9. Let X be a complicated commutative BCC-
algebra and let d be a derivation on X. Then the following hold: for all
x, y ∈ X

(i) if d(x ∧ y) = dx ∧ dy, then d is an isotone derivation.
(ii) if d(x + y) = dx + dy, then d is an isotone derivation.

Proof. (i) Let x, y ∈ X with x ∗ y = 0. Then x ∧ y = x ∗ (x ∗ y) =
x ∗ 0 = x. Hence dx = d(x ∧ y) = dx ∧ dy ≤ dy. Thus d is an isotone
derivation.

(ii) From Proposition 3.10 (i), we have x+y = y. Hence dy = d(x+y) =
dx + dy and so dx ≤ dy. Thus d is an isotone derivation.

Theorem 4.10. Let X be a complicated commutative BCC-algebra
with (x∗y)∗y = x∗y for any x, y ∈ X. Then the following are equivalent:

(i) d is the identity derivation,
(ii) d is one-to-one,
(iii) d is onto.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) are straightforward.

(ii) ⇒ (i): Assume that d is not the identity derivation. Let d be a
one-to-one function. If there exists an element a ∈ X with da 6= a, then
da < a. Denote a1 := da. Then a1 < a. Hence da1 = d(a1 ∧ a) =
(da1 ∧ a) + (a1 ∧ da) = da1 ∧ a + a1 = a1, i.e., da1 = a1 = da, which
implies a1 = a, a contradiction. Thus d is the identity derivation.

(iii) ⇒ (i): Assume that d is onto, i.e., dX = X. For any x ∈ X,
there exists y ∈ Y with x = dy. Hence, using Corollary 4.6, we obtain
dx = d(dy) = d2y = dy = x. Thus d is the identity derivation.
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[8] A. Wroński, BCK-algebras do not form a variety, Math. Japon., 28 (1983),

211-213.

Keum Sook So
Department of Mathematics, Hallym University,
Chuncheon 200-702, Korea.
E-mail: ksso@hallym.ac.kr

Sun Shin Ahn
Department of Mathematics Education, Dongguk University,
Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu


