COMPLICATED BCC-ALGEBRAS AND ITS DERIVATION

Keum Sook So* and Sun Shin Ahn

Abstract

Any $B C K$-ideal of a $B C C$-algebra can be decomposed into the union of some sets. The notion of a complicatedness and a derivation for a $B C C$-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras : $B C K$-algebras and $B C I$-algebras ([5,6]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras.

The class of all $B C K$-algebras is a quasi-variety. K. Iséki posed an interesting problem (solved by A. Wronski [8]) whether the class of $B C K$-algebras is a variety. In connection with this problem, Y. Komori [7] introduced a notion of $B C C$-algebras, W. A. Dudek $[1,2]$ redefined the notion of $B C C$-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [4], J. Hao introduced the concept of ideals in a $B C C$-algebra and studied some related properties.

In this paper, we show that any $B C K$-ideal of a $B C C$-algebra can be decomposed into the union of some sets. We also introduce the notion of a complicated $B C C$-algebra and a derivation on a $B C C$-algebra and investigate some related properties.

2. Preliminaries

By a $B C C$-algebra ([7]) we mean a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: for all $x, y, z \in X$,

[^0]$\left(a_{1}\right)((x * y) *(z * y)) *(x * z)=0$,
$\left(a_{2}\right) 0 * x=0$,
$\left(a_{3}\right) x * 0=x$,
$\left(a_{4}\right) x * y=0$ and $y * x=0$ imply $x=y$.
For brevity, we also call X a $B C C$-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if $x * y=0$. " \leq " is called the $B C C$-order on X. Then \leq is a partial ordering on X. A non-empty subset S of a $B C C$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

In a $B C C$-algebra, the following hold: for any $x, y, z \in X$,
$\left(b_{1}\right) x * x=0$,
$\left(b_{2}\right)(x * y) * x=0$,
$\left(b_{3}\right) x \leq y \Rightarrow x * z \leq y * z$,
$\left(b_{4}\right) x \leq y \Rightarrow z * y \leq z * x$.
Any $B C K$-algebra is a $B C C$-algebra, but there are $B C C$-algebras which are not $B C K$-algebras (cf. [2]). Note that a $B C C$-algebra is a $B C K$-algebra if and only if it satisfies:
$\left(b_{5}\right)(x * y) * z=(x * z) * y$.
Definition 2.1 ([4]). Let X be a $B C C$-algebra and $\emptyset \neq I \subseteq X$. I is called an ideal (or a $B C K$-ideal) of X if it satisfies the following conditions:
(i) $0 \in I$;
(ii) $x * y, y \in I$ imply $x \in I$, for any $x, y \in X$.

Theorem 2.2 ([4]). In a $B C C$-algebra X, every ideal of X is a subalgebra of X.

Definition 2.3 ([3]). Let X be a $B C C$-algebra and $\emptyset \neq I \subseteq X . I$ is called a $B C C$-ideal of X if it satisfies the following conditions:
(i) $0 \in I$;
(ii) $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$.

Lemma 2.4 ([3]). In a $B C C$-algebra X, any $B C C$-ideal of X is an ideal of X.

Corollary 2.5 ([3]). Any $B C C$-ideal of a $B C C$-algebra X is a subalgebra of X.

Remark. In a $B C C$-algebra, a subalgebra need not be an ideal and an ideal need not be a $B C C$-ideal, in general (see $[3,4]$).

Lemma 2.6. An ideal I of a $B C C$-algebra X has the following property:

$$
(\forall x \in X)(\forall y \in A)(x \leq y \Rightarrow x \in A) .
$$

3. Complicated $B C C$-algebras

For any $B C C$-algebra X and $x, y \in X$, we denote

$$
A(x, y):=\{z \in X \mid(z * x) * y=0\} .
$$

Note that $A(x, y)$ is a non-empty set, since $0, x, y \in A(x, y)$.
Theorem 3.1. If I is an ideal of a $B C C$-algebra X, then $I=$ $\cup_{x, y \in I} A(x, y)$.

Proof. Let I be an ideal of a $B C C$-algebra X. If $z \in I$, then $(z * z) * 0=$ $0 * 0=0$. Hence $z \in A(z, 0)$. It follows that

$$
I \subseteq \cup_{z \in I} A(z, 0) \subseteq \cup_{x, y \in I} A(x, y)
$$

Let $z \in \cup_{x, y \in I} A(x, y)$. Then there exist $a, b \in I$ such that $z \in A(a, b)$, so that $(z * a) * b=0 \in I$. Since I is an ideal of X, we have $z \in I$. Thus $\cup_{x, y \in I} A(x, y) \subseteq I$, and consequently $I=\cup_{x, y \in I} A(x, y)$.

Corollary 3.2. If I is an ideal of a $B C C$-algebra X, then $I=$ $\cup_{x \in I} A(x, 0)$.

Proof. By Theorem 3.1, we have

$$
\cup_{x \in I} A(x, 0) \subseteq \cup_{x, y \in I} A(x, y)=I
$$

If $x \in I$, then $x \in A(x, 0)$ since $(x * x) * 0=0 * 0=0$. Hence $I \subseteq$ $\cup_{x \in I} A(x, 0)$. This competes the proof.

We give an example satisfying Theorem 3.1 and Corollary 3.2. See the following example.

Example 3.3. Let $X:=\{0,1,2,3,4\}$ be a $B C C$-algebra ([3]) which is not a $B C K$-algebra with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Then $I:=\{0,1\}$ is an ideal of X. Moreover, it is easy to check that $I=A(0,0)=A(0,1)=A(1,0)=A(1,1)$.

Theorem 3.4. Let I be a non-empty subset of a $B C C$-algebra X such that $0 \in I$ and $I=\cup_{x, y \in I} A(x, y)$. Then I is an ideal of X.

Proof. Let $x * y, y \in I=\cup_{x, y \in I} A(x, y)$. Since $(x * y) *(x * y)=0$, we have $x \in A(y, x * y)$. Hence I is an ideal of X.

Combining Theorems 3.1 and 3.4, we have the following corollary.
Corollary 3.5. Let X be a $B C C$-algebra. Then I is an ideal of X if and only if $I=\cup_{x, y \in I} A(x, y)$.

Definition 3.6. Let X be a $B C C$-algebra. Given $x, y \in X$, we define a set

$$
A(x, y):=\{z \in X \mid(z * x) * y=0\} .
$$

X is said to be complicated if for any $x, y \in X$, the set $A(x, y)$ has the greatest element.

The greatest element of $A(x, y)$ is denoted by $x+y$.
Example 3.7. Let $X:=\{0, a, b, c\}$ be a $B C C$-algebra with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

Then X is a complicated $B C C$-algebra.
Theorem 3.8. Let X be a complicated $B C C$-algebra and let $a, b \in$ X. Then the set

$$
\mathcal{H}(a, b):=\{x \in X \mid a \leq b+x\}
$$

has the least element, and it is $a * b$.
Proof. The inequality $a * b \leq a * b$ implies that $a \leq b+(a * b)$ and so $a * b \in \mathcal{H}(a, b)$. Let $z \in \mathcal{H}(a, b)$. Then $a \leq b+z$, which implies from $\left(b_{3}\right)$ and Definition 3.6 that $a * b \leq(b+z) * b \leq z$. Hence $a * b$ is the least element of $\mathcal{H}(a, b)$.

Proposition 3.9. Let X be a complicated $B C C$-algebra. Then for any $x, y, z \in X$, the following hold:
(i) $(\forall a, b \in X)(a \leq a+b, b \leq a+b)$,
(ii) $(\forall a \in X)(a+0=0=0+a)$,
(iii) $(\forall a, b, c \in X)(a \leq b \Rightarrow a+c \leq b+c)$.

Proof. (i) and (ii) are straightforward.
(iii) Let $a, b, c \in X$ with $a \leq b$. It follows from $\left(b_{4}\right)$ that $(a+c) * b \leq$ $(a+c) * a \leq c$. Hence we have $(a+c) * b \leq c$. Thus $a+c \leq b+c$.

Proposition 3.10. Let X be a $B C C$-algebra with $(a * b) * b=a * b$ for any $a, b \in X$. Then
(i) $(\forall a, b \in X)(a \leq b \Rightarrow a+b=b)$,
(ii) $(\forall a \in X)(a \leq a \Rightarrow a+a=a)$.

Proof. (i) Let $a, b \in X$ with $a \leq b$. Using (b_{4}), we have $(a+b) * b \leq$ $(a+b) * a \leq b$ and so $(a+b) * b \leq b$. Hence $0=((a+b) * b) * b=(a+b) * b$ and so $a+b \leq b$. Since $b \leq a+b$ for all $a, b \in X$, we have $a+b=b$.

We provide some characterizations of ideals in a complicated $B C C$ algebra.

Proposition 3.11. Let A be a non-empty subset of a complicated $B C C$-algebra X. If A is an ideal of X, then it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A)(\exists z \in A$ with $x \leq z, y \leq z)$.

Proof. Assume that A is an ideal of X. Let $x \in A, y \in X$ with $y \leq x$. Then $y * x=0$. Since I is an ideal of X, we have $y \in A$. (i) is valid.

Let $x, y \in A$. Since $(x+y) * x \leq y$ and $y \in A$, it follows from (i) that $(x+y) * x \in A$ so that $x+y \in A$ because A is an ideal of X. If we take $z:=x+y$, then $x \leq z$ and $y \leq z$ by Proposition 3.9 (i). This completes the proof.

Theorem 3.12. Let A be a non-empty subset of a complicated $B C C$-algebra X. Then A is an ideal of X if and only if it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A)(x, y \in A \Rightarrow x+y \in A)$.

Proof. The necessity follows from Proposition 3.11.
Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Obviously $0 \in A$ by (i) and (a_{2}). Let $x, y \in X$ satisfying $y \in A$ and $x * y \in A$. Then $y+(x * y) \in A$ by (ii). Since $x \leq y+(x * y)$ by Theorem 3.8 , it follows from (i) that $x \in A$. Thus A is an ideal of X.

4. A derivation in $B C C$-algebras

We introduce the notion of a derivation in $B C C$-algebras as follows.
Definition 4.1. Let X be a complicated $B C C$-algebra. A map $d: X \rightarrow X$ is said to be a derivation on X if it satisfies the following condition

$$
d(x \wedge y)=(d x \wedge y)+(x \wedge d y)
$$

where $x \wedge y=y *(y * x)$, for all $x, y \in X$.
We often abbreviate $d(x)$ to $d x$.
Example 4.2. (1) Let $X:=\{0, a, b, c\}$ be a complicated $B C C$ algebra as Example 3.7. Define a function d on X by

$$
d x= \begin{cases}0 & \text { if } x=0, b \\ c & \text { if } x=a, c\end{cases}
$$

Then d is not a derivation on X since $d(c \wedge b)=d(b *(b * c))=d(b * 0)=$ $d(b)=0 \neq b=b+0=(b * 0)+(0 * 0)=(b *(b * c))+(0 *(0 * c))=$ $c \wedge b+c \wedge 0=(d c \wedge b)+(c \wedge d b)$.
(2) Define a function d on X in Example 3.7 by

$$
d x= \begin{cases}0 & \text { if } x=0, b \\ a & \text { if } x=a, c\end{cases}
$$

Then it is easy to see that d is a derivation on X.
Definition 4.3. A $B C C$-algebra X is said to be commutative if for any $x, y \in X, x \wedge y=y \wedge x$.

Example 4.4. (1) Let $X:=\{0, a, b, c\}$ be a $B C C$-algebra as Example 3.7. Then X is a commutative $B C C$-algebra with $(x * y) * y=x * y$ for all $x, y \in X$.
(2) Let $X:=\{0,1,2,3,4\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	3	1	0

Then X is a $B C C$-algebra which is not a $B C K$-algebra satisfying $(x *$ $y) * y=x * y$ for all $x, y \in X$, but not commutative, since $3 *(3 * 2)=$ $3 * 1=3 \neq 2=2 * 0=2 *(2 * 3)$.
(3) Let $X:=\{0,1,2,3\}$ be a $B C C$-algebra with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	0
3	3	2	1	0

Then X is commutative, but not satisfying $(x * y) * y=x * y$ for all $x, y \in X$, since $(3 * 2) * 2=1 * 2=0 \neq 1=3 * 2$.

Proposition 4.5. Let X be a complicated commutative $B C C$ algebra with $(x * y) * y=x * y$ for any $x, y \in X$. Then the following hold:
(i) $d x=d x \wedge x \leq x$ for all $x \in X$,
(ii) $d(A(a, b)) \subseteq A(a, b)$,
(iii) If I is an ideal of a $B C C$-algebra X, then $d(I) \subseteq I$.

Proof. (i) Since $d x=d(x \wedge x)=(d x \wedge x)+(x \wedge d x)=d x \wedge x+d x \wedge x=$ $d x \wedge x=x *(x * d x) \leq x$, we have $d x=d x \wedge x \leq x$.
(ii) Let $z \in A(a, b)$. Then $z * a \leq b$. Since $d z \leq z$, using (b_{3}), we have $d z * a \leq z * a \leq b$. Hence $d z \in A(a, b)$. Therefore $d(A(a, b)) \subseteq A(a, b)$.
(iii) Let I be an ideal of a $B C C$-algebra X. Let $x \in I$. From (i), we get $d x \leq x$. Hence $d x * x=0 \in I$. Since I is an ideal of $X, d x \in I$. Thus $d(I) \subseteq I$.

Corollary 4.6. Let X be a complicated commutative $B C C$-algebra with $(x * y) * y=x * y$ for any $x, y \in X$. Then
(i) $d(a+b) \leq a+b$
(ii) $d^{2} x=d x$.

Proof. (i) Let $x:=a+b$ in Proposition 4.5 (i).
(ii) Using Proposition 4.5 (i), we obtain $d^{2} x=d(d x)=d(d x \wedge x)=$ $\left(d^{2} x \wedge x\right)+d x \wedge d x=d^{2} x+d x=d x$.

Theorem 4.7. Let X be a complicated commutative $B C C$-algebra with $(x * y) * y=x * y$ for any $x, y \in X$. Then

$$
d x \wedge d y \leq d(x \wedge y) \leq d x+d y
$$

Proof. Since $d y \leq y$, by $\left(b_{4}\right)$, we have $d x * y \leq d x * d y$ and hence $d x *(d x * d y) \leq d x *(d x * y)$, i.e., $d x \wedge d y \leq d x \wedge y$. Similarly, we obtain
$d x \wedge d y \leq d y \wedge x$. Hence $d x \wedge d y \leq d x \wedge y+d y \wedge x=d(x \wedge y)$. Since $d x \wedge y=d x *(d x * y) \leq d x$, we obtain

$$
d(x \wedge y)=d x \wedge y+x \wedge d y \leq d x+x \wedge d y \leq d x+d y
$$

Therefore we have $d x \wedge d y \leq d(x \wedge y) \leq d x+d y$.
Definition 4.8. Let X be a complicated $B C C$-algebra. A derivation d on X is said to be isotone if $x \leq y$ implies $d x \leq d y$ for all $x, y \in X$.

Proposition 4.9. Let X be a complicated commutative $B C C$ algebra and let d be a derivation on X. Then the following hold: for all $x, y \in X$
(i) if $d(x \wedge y)=d x \wedge d y$, then d is an isotone derivation.
(ii) if $d(x+y)=d x+d y$, then d is an isotone derivation.

Proof. (i) Let $x, y \in X$ with $x * y=0$. Then $x \wedge y=x *(x * y)=$ $x * 0=x$. Hence $d x=d(x \wedge y)=d x \wedge d y \leq d y$. Thus d is an isotone derivation.
(ii) From Proposition 3.10 (i), we have $x+y=y$. Hence $d y=d(x+y)=$ $d x+d y$ and so $d x \leq d y$. Thus d is an isotone derivation.

Theorem 4.10. Let X be a complicated commutative $B C C$-algebra with $(x * y) * y=x * y$ for any $x, y \in X$. Then the following are equivalent:
(i) d is the identity derivation,
(ii) d is one-to-one,
(iii) d is onto.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are straightforward.
(ii) \Rightarrow (i): Assume that d is not the identity derivation. Let d be a one-to-one function. If there exists an element $a \in X$ with $d a \neq a$, then $d a<a$. Denote $a_{1}:=d a$. Then $a_{1}<a$. Hence $d a_{1}=d\left(a_{1} \wedge a\right)=$ $\left(d a_{1} \wedge a\right)+\left(a_{1} \wedge d a\right)=d a_{1} \wedge a+a_{1}=a_{1}$, i.e., $d a_{1}=a_{1}=d a$, which implies $a_{1}=a$, a contradiction. Thus d is the identity derivation.
(iii) \Rightarrow (i): Assume that d is onto, i.e., $d X=X$. For any $x \in X$, there exists $y \in Y$ with $x=d y$. Hence, using Corollary 4.6, we obtain $d x=d(d y)=d^{2} y=d y=x$. Thus d is the identity derivation.

References

[1] W. A. Dudeck, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Acaddemia Sinica, 20(1992), 129-136.
[2] W. A. Dudeck, On proper BCC-algebras, Bull. Inst. Math. Acaddemia Sinica, 20(1992), 137-150.
[3] W. A. Dudeck and X. Zhang, On ideals and congruences in BCC-algebras, Czecho Math. J., 48(123) (1998), 21-29.
[4] J. Hao, Ideal Theory of BCC-algebras, Sci. Math. Japo., 3 (1998), 373-381.
[5] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8 (1980), 125-130.
[6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23 (1978), 27-23.
[7] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon., 29 (1984), 391-394.
[8] A. Wroński, BCK-algebras do not form a variety, Math. Japon., 28 (1983), 211-213.

Keum Sook So
Department of Mathematics, Hallym University, Chuncheon 200-702, Korea.
E-mail: ksso@hallym.ac.kr

Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu

[^0]: Received April 9, 2012. Accepted May 22, 2012.
 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. BCC-algebras, complicated $B C C$-algebras, derivation.

 * Corresponding author.
 * This research was supported by Hallym University Research Fund 2011(HRF-201112-003)

