DOI QR코드

DOI QR Code

Microwave-assisted Weak Acid Hydrolysis of Proteins

  • Received : 2012.05.31
  • Accepted : 2012.06.18
  • Published : 2012.06.28

Abstract

Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at $37^{\circ}C$, $50^{\circ}C$, and $100^{\circ}C$ for 1 h. The most effective hydrolysis was observed at $100^{\circ}C$. Hydrolysis products were investigated using matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini of aspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60- min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at $100^{\circ}C$. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteins and that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

Keywords

References

  1. Weber, M.; Rau, M.; Madlener, K.; Elsaesser, A.; Bankovic, D.; Mitrovic, V.; Hamm, C. Clin. Biochem. 2005, 38, 1027. https://doi.org/10.1016/j.clinbiochem.2005.07.011
  2. Gevaert, K.; Vandekerckhove, J. Electrophoresis 2000, 21, 1145. https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0.CO;2-Z
  3. Cottrell, J. S. Pept. Res. 1994, 7, 115.
  4. Han, K.; Richard, C.; Biserte, G. Int. J. Biol. Chem. 1983, 15, 875.
  5. Sun, W.; Gao, S.; Wang, L.; Chen, Y.; Wu, S.; Wang, X.; Zheng, D.; Gao, Y. Mol. Cell Proteomics 2006, 5, 769. https://doi.org/10.1074/mcp.T500022-MCP200
  6. Pramanik, B. N.; Mirza, U. A.; Ing, Y. H.; Liu, Y. H.; Bartner, P. L.; Weber, P. C.; Bose, A. K. Protein Sci. 2002, 11, 2676.
  7. Lin, S. S.; Wu, C. H.; Sun, M. C.; Sun, C. M.; Ho, Y. P. J. Am. Soc. Mass Spectrom. 2005, 16, 581. https://doi.org/10.1016/j.jasms.2005.01.012
  8. Lee, J. H.; Park, S.; Lee, S.; Hong, J.; Park, K. H.; Kim, H. S.; Kim, J. Mass Spectrom. Lett. 2011, 2, 84. https://doi.org/10.5478/MSL.2011.2.4.084
  9. Zhong, H.; Zhang, Y.; Wen, Z.; Li, L. Nat. Biotechnol. 2004, 22, 1291. https://doi.org/10.1038/nbt1011
  10. Zhong, H.; Marcus, S. L.; Li, L. J. Am. Soc. Mass Spectrom. 2005, 16, 471. https://doi.org/10.1016/j.jasms.2004.12.017
  11. Reiz, B.; Li, L. J. Am. Soc. Mass Spectrom. 2010, 21, 1596. https://doi.org/10.1016/j.jasms.2010.04.012
  12. Yang, H. J.; Hong, J.; Lee, S.; Shin, S.; Kim, J.; Kim, J. Rapid Commun. Mass Spectrom. 2010, 24, 901. https://doi.org/10.1002/rcm.4467
  13. Yang, H. J.; Shin, S.; Kim, J.; Hong, J.; Lee, S.; Kim, J. Rapid Commun. Mass Spectrom. 2011, 25, 88. https://doi.org/10.1002/rcm.4840
  14. Shin, S.; Yang, H. J.; Kim, J.; Kim, J. Anal. Biochem. 2011, 414, 125. https://doi.org/10.1016/j.ab.2011.02.026
  15. Inglis, A. S. Methods Enzymol. 1983, 91, 324. https://doi.org/10.1016/S0076-6879(83)91030-3
  16. Li, A.; Sowder, R. C.; Henderson, L. E.; Moore, S. P.; Garfinkel, D. J.; Fisher, R. J. Anal. Chem. 2001, 73, 5395. https://doi.org/10.1021/ac010619z
  17. Hua, L.; Low, T. Y.; Sze, S. K. Proteomics 2006, 6, 586. https://doi.org/10.1002/pmic.200500304

Cited by

  1. Optimization in Detecting Multiply-charged Protein Ions using MALDI TOF-MS vol.4, pp.1, 2013, https://doi.org/10.5478/MSL.2013.4.1.21
  2. Weak Acid Hydrolysis of Proteins vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.27
  3. Myoglobin from common pheasant (Phasianus colchicus L.): Purification and primary structure characterization 2018, https://doi.org/10.1111/jfbc.12477