DOI QR코드

DOI QR Code

Relationship of Antioxidant Enzyme Activity, Lipid Oxidation, and Aroma Pattern of Hanwoo (Korean Cattle) Beef under Oxidation-promoted Condition

산화 촉진 조건에서 한우육의 항산화효소 활성, 지방산화 및 향기패턴의 관계

  • Kang, Sun-Moon (National Institute of Animal Science, Rural Development Administration) ;
  • Muhlisin, Muhlisin (Department of Animal Products and Food Science, Kangwon National University) ;
  • Kim, Gur-Yoo (Department of Animal Products and Food Science, Kangwon National University) ;
  • Cho, Soo-Hyun (National Institute of Animal Science, Rural Development Administration) ;
  • Park, Beom-Young (National Institute of Animal Science, Rural Development Administration) ;
  • Jung, Seok-Geun (National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Sung-Ki (Department of Animal Products and Food Science, Kangwon National University)
  • 강선문 (농촌진흥청 국립축산과학원) ;
  • 무흘리신 (강원대학교 동물식품응용과학과) ;
  • 김거유 (강원대학교 동물식품응용과학과) ;
  • 조수현 (농촌진흥청 국립축산과학원) ;
  • 박범영 (농촌진흥청 국립축산과학원) ;
  • 정석근 (농촌진흥청 국립축산과학원) ;
  • 이성기 (강원대학교 동물식품응용과학과)
  • Received : 2012.04.14
  • Accepted : 2012.06.04
  • Published : 2012.06.30

Abstract

This study was carried out in order to investigate the relationship of antioxidant enzyme activity, lipid oxidation, and aroma pattern of Hanwoo (Korean cattle) beef for 8 d at $15^{\circ}C/RH$ 100% under 0% $O_2$/20% $CO_2/80%\;N_2$, 25% $O_2$/20% $CO_2/55%\;N_2$, 50% $O_2$/20% $CO_2/30%\;N_2$, and 75% $O_2$/20% $CO_2/5%\;N_2$-conditions. The reduction of $O_2$ and the induction of $CO_2$ were shown in the 25-75% $O_2$-groups during storage and total change rates of $O_2$ and $CO_2$ were followed in order: 25%>50%>75%. Catalase activity was not significantly different among all groups. During storage, glutathione peroxidase activity decreased by increasing the $O_2$ concentration and was followed at 8 d in order: 0%>25%>50%>75% (p<0.05). From 2 d of storage, TBARS content had significant (p<0.05) differences in order: 0%>25%>50%>75%. The CIE $L^*$ value was higher (p<0.05) in the 25-75% $O_2$-groups, compared with the 0% $O_2$-group. During the first time, the CIE $a^*$ value was higher (p<0.05) in order: 0%<25%<50%<75% but was lower (p<0.05) in the 25-75% $O_2$-groups from 2 d of storage than in the 0% $O_2$-group. The CIE $b^*$ value was higher (p<0.05) in the 25-75% $O_2$-groups than in the 0% $O_2$-group and had significant (p<0.05) differences at 0 and 8 d in order: 0%<25%<50%<75%. Aroma patterns with the electronic nose were clearly discriminated between the 0% $O_2$-groups and the 25-75% $O_2$-groups at 8 d of storage. Therefore, high oxygen reduced stabilities of antioxidant enzymes, lipid oxidation, and color in Hanwoo beef. Furthermore, antioxidant enzyme activities and lipid oxidation could affect aroma patterns.

본 연구는 산화 촉진 조건에서 한우육의 항산화효소 활성, 지방산화 및 향기패턴의 관계에 관해 구명하고자 실시하였다. $15^{\circ}C/RH$ 100%와 동일한 이산화탄소의 농도(20%)에서 산소의 농도(0%, 25%, 50% 및 75%)에 따라 8일간 저장하면서 가스의 농도, catalase 및 glutathione peroxidase(GSH-Px) 활성, TBARS, 육색 및 향기패턴을 분석하였다. 가스의 농도는 산소 처리구들에서 저장기간 동안 산소의 감소와 이산화탄소의 증가를 보였으며, 총감소량과 총 증가량은 25%>50%>75% 순으로 높았다. Catalase활성은 저장기간 동안 산소 농도에 따른 차이를 보이지 않았으나, GSH-Px 활성은 저장 중 산소의 농도가 증가함에 따라 급격히 감소하여 8일째에는 0%>25%>50%>75%순으로 높게 나타났다(p<0.05). TBARS 함량은 산소의 농도가 증가함에 따라 빨리 촉진되어 저장 2일째부터 0%<25%<50%<75% 순으로 높게 나타났다(p<0.05). 육색은 산소처리구들의 명도($L^*$)가 무산소 처리구보다 높았다(p<0.05).적색도($a^*$)는 저장 0일째에 0%<25%<50%<75% 순으로 높았으나(p<0.05), 2일째부터는 산소 처리구들이 낮았다(p<0.05). 황색도($b^*$)는 산소 처리구들이 높았으며(p<0.05),저장 0일과 8일째에 0%<25%<50%<75% 순으로 높게 나타났다(p<0.05). 전자코에 의한 향기패턴은 저장 8일째에 무산소 처리구와 산소 처리구들간에 뚜렷하게 분별되었다. 따라서 산소의 농도가 증가함에 따라 한우육의 항산화효소, 지방산화 및 육색의 안정성이 현저하게 저하되었으며, 항산화효소 활성 및 지방산화가 향기패턴의 차이에 영향을 미친다고 사료된다.

Keywords

References

  1. Aebi, H. E. (1983). Catalase. In: Methods of enzymatic analysis. Bergmeyer, H. U., Bergmeyer, J., and $Gra{\beta}l$, M. (eds), Verlag Chemie GmbH, Weinheim, pp. 273-286.
  2. Ahn, D. U., Jo, C., and Olson, D. G. (2000) Analysis of volatile components and the sensory characteristics of irradiated raw pork. Meat Sci. 54, 209-215. https://doi.org/10.1016/S0309-1740(99)00081-9
  3. Bartkowski, L., Dryden, F. D., and Marchello, J. A. (1982) Quality changes of beef steaks stored in controlled gas atmospheres containing high or low levels of oxygen. J. Food Prot. 45, 41-45. https://doi.org/10.4315/0362-028X-45.1.41
  4. Batifoulier, F., Mercier, Y., Gatellier, P., and Renerre, M. (2002) Influence of vitamin E on lipid and protein oxidation induced by $H_{2}O_{2}$-activated MetMb in microsomal membranes from turkey muscle. Meat Sci. 61, 389-395. https://doi.org/10.1016/S0309-1740(01)00209-1
  5. CIE (2004) Technical report: colorimetry. 3rd ed, CIE (Commision Internationale de Leclairage) Central Bureau, Vienna, Publication 8: 2004.
  6. Christopherson, B. O. (1969) Reduction of linoleic acid hydroperoxide by a glutathione peroxidase. Biochem. Biophys. Acta 176, 463-470. https://doi.org/10.1016/0005-2760(69)90213-6
  7. Decker, E. A., Livisay, S. A., and Zhou, S. (2000) Mechanisms of endogenous skeletal muscle antioxidants: chemical and physical aspects. In: Antioxidants in muscle foods: nutritional strategies to improve quality. Decker, E. A., Faustman, C., and Lopez-Bote, C. J. (eds), John Wiley & Sons, Inc., NY, pp. 25-60.
  8. Descalzo, A. M., Rossetti, L., Grigioni, G., Irurueta, M., sancho, A. M., Carrete, J., and Pensel, N. A. (2007) Antioxidant status and odour profile in fresh beef from pasture or grainfed cattle. Meat Sci. 75, 299-307. https://doi.org/10.1016/j.meatsci.2006.07.015
  9. Faustman, C., Sun, Q., Mancini, R., and Suman, S. P. (2010) Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci. 86, 86-94. https://doi.org/10.1016/j.meatsci.2010.04.025
  10. Flohe, L. and Gunzler, W. A. (1984). Assays of glutathione peroxidase. In: Methods in enzymology. Packer, L. (ed), Academic Press, Inc., London, pp. 114-121.
  11. Gardner, J. W. and Bartlett, P. N. (1994) A brief history of electronic noses. Sens. Act. 18, B211-B220.
  12. Gatellier, P., Mercier, Y., and Renerre, M. (2004) Effect of diet finishing mode (pasture or mixed diet) on antioxidant status of Charolais bovine meat. Meat Sci. 67, 385-394. https://doi.org/10.1016/j.meatsci.2003.11.009
  13. Gheisari, H. R. and Motamedi, H. (2010) Chloride salt type/ ionic strength and refrigeration effects on antioxidant enzymes and lipid oxidation in cattle, camel and chicken meat. Meat Sci. 86, 377-383. https://doi.org/10.1016/j.meatsci.2010.05.020
  14. Grigioni, G. M., Margara, C. A., Pensel, N. A., Snchez, G., and Vaudagna, S. R. (2000) Warmed-over flavour analysis in low temperature-long time processed meat by an electronic nose. Meat Sci. 56, 221-228. https://doi.org/10.1016/S0309-1740(00)00045-0
  15. Hernandez, P., Park, D., and Rhee, K. S. (2002) Chloride salt type/ionic strength, muscle site and refrigeration effects on antioxidant enzymes and lipid oxidation in pork. Meat Sci. 61, 405-410. https://doi.org/10.1016/S0309-1740(01)00212-1
  16. Insani, E. M., Eyherabide, A., Grioni, G., Sancho, A. M., Pensel, N. A., and Descalzo, A. M. (2008) Oxidative stability and its relationship with natural antioxidants during refrigerated retail display of beef produced in Argentina. Meat Sci. 79, 444-452. https://doi.org/10.1016/j.meatsci.2007.10.017
  17. Kanner, J. (1987) German, J. B., and Kinsella, J. E. (1987) Initiation of lipid peroxidation in biological systems. CRC Crit. Rev. Food Sci. 25, 317-364. https://doi.org/10.1080/10408398709527457
  18. Kanner, J. (1994) Oxidative processes in meat and meat products: quality implications. Meat Sci. 36, 169-189. https://doi.org/10.1016/0309-1740(94)90040-X
  19. Kerry, J. P., O'Sullivan, M. G., Buckley, D. J., Lynch, P. B., and Morrissey, P. A. (2000) The effects of dietary $\alpha$-tocopherol acetate supplementation and modified atmosphere packaging (MAP) on the quality of lamb patties. Meat Sci. 56, 61-66. https://doi.org/10.1016/S0309-1740(00)00021-8
  20. Limbo, S., Torri, L., Sinelli, N., Franzetti, L., and Casiraghi, E. (2010) Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Sci. 84, 129-136. https://doi.org/10.1016/j.meatsci.2009.08.035
  21. Mei, L., Crum, A. D., and Decker, E. A. (1994) Development of lipid oxidation and inactivation of antioxidant enzymes in cooked pork and beef. J. Food Lipids 1, 273-283. https://doi.org/10.1111/j.1745-4522.1994.tb00252.x
  22. Mercier, Y., Gatellier, P., and Renerre, M. (2004) Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Sci. 66, 467-473. https://doi.org/10.1016/S0309-1740(03)00135-9
  23. Monahan, F. J. (2000) Oxidation of lipids in muscle foods: fundamental and applied concerns. In: Antioxidants in muscle foods: nutritional strategies to improve quality. Decker, E. A., Faustman, C., and Lopez-Bote, C. (eds), John Wiley & Sons, Inc., NY, pp. 3-23.
  24. Morcuende, D., Estévez, M., Ruiz, J., and Cava, R. (2003) Oxidative and lipolytic deterioration of different muscles from free-range reared Iberian pigs under refrigerated storage. Meat Sci. 65, 1157-1164. https://doi.org/10.1016/S0309-1740(02)00344-3
  25. Nam, K. C. and Ahn, D. U. (2003) Use of antioxidants to reduce lipid oxidation and off-odor volatiles of irradiated pork homogenates and patties. Meat Sci. 63, 1-8. https://doi.org/10.1016/S0309-1740(02)00043-8
  26. Nawar, W. W. (1985) Lipids. In: Food chemistry. Fennema, O. R. (ed), Marcel Dekker, NY, pp. 139-244.
  27. O'Grady, M. N., Monahan, F. J., Burke, R. M., and Allen, P. (2000) The effect of oxygen level and exogenous $\alpha$-tocopherol on the oxidative stability of minced beef in modified atmosphere packs. Meat Sci. 55, 39-45. https://doi.org/10.1016/S0309-1740(99)00123-0
  28. Renerre, M., Dumont, F., and Gatellier, Ph. (1996) Antioxidant enzyme activities in beef in relation to oxidation of lipid and myoglobin. Meat Sci. 43, 111-121.
  29. Sinnhuber, R. O. and Yu, T. C. (1977) The 2-thiobarbituric acid reactive substances, an objective measure of the oxidative deterioration occurring in fats and oils. J. Jap. Soc. Fish. Sci. 26, 259-267.
  30. Smith, G. C., Belk, K. E., Sofos, J. N., Tatum, J. D., and Williams, S. N. (2000) Economic implications of improved color stability in beef. In: Antioxidants in muscle foods: nutritional strategies to improve quality. Decker, E. A., Faustman, C., and Lopez-Bote, C. J. (eds), John Wiley & Sons, Inc., NY, pp. 397-426.
  31. SPSS (2009) PASW 18 Statistics, SPSS Inc., Illinois, USA.
  32. Tikk, K., Haugen, J. E., Andersen, H. J., and Aaslying, M. D. (2008) Monitoring of warmed-over flavor in pork using the electronic nose-correlation to sensory attributes and sencondary lipid oxidation products. Meat Sci. 80, 1254-1263. https://doi.org/10.1016/j.meatsci.2008.05.040
  33. Zakrys, P. I., Hogan, S. A., O'Sullivan, M. G., Allen, P., and Kerry, J. P. (2008) Effects of oxygen concentration on the sensory evaluation and quality indicators of beef muscle packed under modified atmosphere. Meat Sci. 79, 648 -655. https://doi.org/10.1016/j.meatsci.2007.10.030
  34. Zhao, Y., Wells, J. H., and McMillin, K. W. (1994) Applications of dynamic modified atmosphere packaging systems for fresh red meats: review. J. Muscle Foods 5, 299-328.. https://doi.org/10.1111/j.1745-4573.1994.tb00538.x

Cited by

  1. Effect of Packaging Method on the Lipid Oxidation, Protein Oxidation, and Color in Aged Top Round from Hanwoo (Korean Native Cattle) during Refrigerated Storage vol.34, pp.3, 2014, https://doi.org/10.5851/kosfa.2014.34.3.273
  2. Evaluation of Various Packaging Systems on the Activity of Antioxidant Enzyme, and Oxidation and Color Stabilities in Sliced Hanwoo (Korean Cattle) Beef Loin during Chill Storage vol.27, pp.9, 2014, https://doi.org/10.5713/ajas.2014.14136