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Abstract
Power continues to be a driving force in central processing units (CPU) design. Most of the advanced breakthroughs in

power have been in a realm that is applicable to workstation CPUs. Advanced power management systems will manage

temperature, dynamic voltage scaling and dynamic frequency scaling in a CPU. The use of power management systems

for microcontrollers and embedded CPUs has been modest, and mostly focuses on very large scale integration (VLSI)

level optimizations compared to system level optimizations. In this paper, a dynamic frequency controlling (DFC) tech-

nique is introduced, to lay the foundation of a system level power management system for commercial microcontrollers.

The DFC technique allows a commercial microcontroller to have minor modifications on both the hardware and software

side, to allow the clock frequency to change to save power; results in this study show a 10% savings. By adding an addi-

tional layer of software abstraction at the interrupt level, the microcontroller can operate without having knowledge of

the current clock frequency, and this can be accomplished without having to use an embedded operating system. 

Category: Embedded computing
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I. INTRODUCTION

Embedded systems continue to be the dominant market

for all computer systems. Over the past few years, a num-

ber of new embedded domains have sprung up, including

mobile devices and sensor networks. These new areas of

applications have power consumption as the top design

requirement, due to the use of batteries as the only supply

of power. The limitation of a portable power source’s

capacity still restricts devices, in terms of portability and

durability. During active computation, the system perfor-

mance varies widely and quickly, as a function of the

workload. The higher the performance, the larger the

power impact will be on the system.

Research in sensor networks is increasing, and offers

ways to improve their power consumption. Research in

sensor networks is increasing, and the need to improve

the power consumption in highly needed. Sensor net-

works are small-embedded devices that have a minimum

number of physical sensors, which communicate with

each other and/or a base station by some wireless proto-

col. Most of the sensor networks are built on low-end 8-

bit and 16-bit microcontrollers. These low-end microcon-

trollers provide sufficient computation performance, but

a boost in power efficiency can contribute to the wide-

spread adoption of this technology. If current existing

commercial products do not have advanced power man-

agement as a standard option, then it would be beneficial
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to seek out an external solution that can be added on, with

minimal modification to the hardware.

Power management is not completely lacking in embed-

ded system design. All microcontrollers are designed with

low power as a design consideration, and the very large

scale integration (VLSI) level has been highly optimized.

What is currently lacking in microcontroller design is the

ability to manage power at the high abstraction level.

Embedded systems have traditionally focused on sleep

modes, and have no active power management unit; some

additional external schemes are needed in the design to

enable dynamic on-the-fly power management.

Many power reduction schemes have been developed,

and have been implemented as highly integrated system-

on-a-chip (SoC) devices [1]. The research in this paper is

to create a power management system that can be added

on to existing microcontrollers that have no built-in

power management support.

The target applications of microcontrollers differ from

applications of general-purpose computers, in terms of

computation. Microcontroller computation is concerned

with retaining the throughput of the system. There is no

need for increasing computation speed, because it yields

no change in terms of throughput, which is in contrast to

general purpose computing - the goal of which is to finish

a computation as quickly as possible, to gain the most

performance. As maintaining throughput is only required,

the architecture can be redesigned with strategies that

affect the logic speed or the internal cycles, but still yield

the same functionalities. This paper will focus on main-

taining the throughput of a microcontroller, by focusing

on the chip frequency. By adjusting the chip frequency,

power can be controlled. This approach is referred to as

dynamic frequency controlling (DFC).

Dynamic frequency scaling (DFS) is one power reduc-

tion scheme that is commonly used in many central

processing units (CPU) microprocessors found in prod-

ucts by AMD and Intel. By reducing the clock frequency

to the minimal level of computation, it can reduce the fre-

quency factor, linearly affecting the power consumption.

DFS is built into the CPU, and is adjusted based on the

workload or power supply currently connected to the

CPU. In this paper we will discuss a similar concept,

called DFC. DFC consists of an external circuit that is

connected to a microcontroller. The external circuit will

adjust the clock frequency, based on throughput informa-

tion from physical interfaces/sensor connected to the

microcontroller. The DFC will have a monitoring system

that maintains the throughput, based on the interfaced

sensor.

To fully understand the benefits of DFC, we must also

understand the role of power at the software level. The

goal of DFC is to change the energy required for each

instruction at different clock frequencies. There is no

benefit in power savings, unless an instruction consumes

energy differently at different clock rates. The power

consumption of the software will come down to a number

of different components, including: the clock frequency,

operands, memory register, and mixture of instructions

used. One way to get an estimate of the power consump-

tion is to look at the power consumed in an instruction-to-

instruction operation. This paper examines the power

consumption of every assembly instruction on the periph-

eral interface controller (PIC) microcontroller device

PIC16F877A. Understanding the power at the instruction

level allows us to estimate the power saving using DFC.

The work in this paper shows that DFC is one way to

reduce power consumption, and that it can be added to

off-the-shelf microcontrollers, with minor overhead. The

DFC technique was added to the 8-bit PIC microcontrol-

ler in this paper to demonstrate the proof of concept of

adding external power management. Results using real

equipment show that a finite impulse response (FIR) filter

example can save up to 10% with the addition of DFC.

The remainder of the paper is organized as follows:

Section II discusses the previous research that has been

conducted in the area of power management; Section III

gives background information on energy measuring;

Section IV discusses how the power was measured on the

PIC microcontroller for each individual instruction and

how the power measurements can be used to determine

the power consumption of an algorithm; Section V lays

out how DFC can be added to a commercial microcon-

troller; Section VI shows some verification testing; and

Section VII concludes the paper, with a summary of the

work that has been conducted.

II. PREVIOUS RESEARCH

A. Hardware Techniques

There are a number of options available for power con-

sumption reduction in a microcontroller system. Each

approach is suitable for some architectures and design

targets. Some of the techniques will come at the expense

of increased implementation cost, and can be done only

at the manufacturer level, i.e., optimization at the transis-

tor level. The user also can apply many techniques at the

system level that are modifiable. According to Fig. 1, the

higher the abstraction level to which a methodology is

applied, the greater the potential power savings [2].

Power consumption reduction can be accomplished in

many ways, ranging from adaptive processing technol-

ogy, reduced switching activity, active power reduction,

to changes in a system design; each scheme is applied at

different levels. In embedded system applications, manu-

factured chips such as PIC microcontrollers are tailored

and fixed. Modification at the gates-level is effectively

impossible, and so is not considered.

One technique that is easy to implement in a design to

save power is clock gating. Clock gating will allow for a
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control signal to set when the clock is allowed to enter the

system. When the clock gate is off, the system will not

clock changes, resulting in no dynamic power dissipa-

tion. Clock gating is very useful at the VLSI level, and

can be used to turn off part of the microcontroller. It

could also be used to control the overall clock controlling

the entire microcontroller. However, we do not consider

the use of clock gating in this paper. The reason clock

gating is not considered, is that by using clock gating we

would remove the ability for the microcontroller to respond

to interrupts. Microcontrollers are mostly used for real-

time devices, and require the use of periodic timer inter-

rupts. Microcontrollers must have a way to measure time,

and clock gating will eliminate this feature if it is used.

Two techniques that can be added to a design, that do

not require any changes to the gate-level implementation,

are dynamic voltage scaling (DVS) and DFS [3].

DVS is a technique that is based on the fact that when

the system is slower, the operating voltage can be reduced.

According to the power equation P , the energy con-

sumed by the processor per clock cycle scales quadruples

with the operating voltage, thus reducing the supply volt-

age, which can significantly reduce the overall power dis-

sipation. This scheme needs some special hardware, such

as a voltage regulator; and it is usually implemented

along with the DFS technique.

The DFS technique conserves power by adjusting the

clock frequency to the minimum level that is enough for

computation. This scheme is widely used in computer archi-

tecture whereby the CPU automatically adjusts its speed

by the workloads. This can reduce the switching activity.

DFS and DVS are techniques that must be built into

the microcontroller. If a product does not have these fea-

tures available, then the microcontroller has no power

management system.

B. Software Techniques

We performed a literature search of software power

consumption in 8-bit low end embedded systems. Some

work was done on power for embedded systems [4-6].

There are many papers on improving hardware perfor-

mance, but not as many on software power optimization.

Our search did find some early work on software power

consumption using high-end 32-bit processors. While the

32-bit processors used are different from the 8-bit proces-

sor used in this paper, the previous work does lend some

insight.

The first major study was made by Tiwari et al. [7].

This was a study on the effects software has on power

consumption. Tiwari et al. [7] hypothesized that “by mea-

suring the current drawn by the processor as it repeatedly

executes certain instructions or short instruction sequences,

it is possible to obtain most of the information that is

needed to evaluate the power cost of a program.” During

experimentation, almost every aspect of the instructions

were examined, though of course some of them were

found to have a negligible impact on the overall power

consumption. The Tiwari et al. [7] model of power esti-

mation ended up using the base cost of the instructions

being used, as well as the inter-instruction effects present

in the program, while neglecting the registers and imme-

diate values being used. The work done by [7] is more in

depth than the work we present in this paper. Tiwari et al.

[7] needed to examine CPU techniques such as pipeline

stalling and cache misses. With the power estimator

developed by [7], a power reduction of up to 40% could

be obtained, by reordering and replacing instructions.

An additional study made by Russell and Jacome [8]

used a simpler model. They found that many items, includ-

ing registers and condition codes, were insignificant, and

could be ignored during experimentation. They also found

that immediate values within instructions had a large

effect, and needed to randomize the values to achieve an

actual measurement. The final conclusion was that the

average energy was roughly the same for each instruction.

Their studies lead to the conclusion that there was no

need to consider individual instructions when estimating

power. By using run time, average power, and frequency,

they were able to estimate the power used by a program.

The work by [7, 8] established the basis for all power

consumption measurements and power estimators. The

same techniques have been incorporated and expanded in

SimplePower [9], Wattch [10], and XTREM Power [11].

While [9-11] have expanded the knowledge of power

prediction, their techniques are not as applicable to the

research we performed. Those newer techniques used a

model of the physical architecture, or used performance

counters that are not found in typical 8-bit embedded pro-

cessors.

While there have been many more modern approaches

to power estimation, such as the work done in [9-11], we

focus on using similar techniques to those that were per-

formed in [7, 8]. The main reason for our simple approach

is due to the fact that the PIC microcontroller is only an

8-bit processor, and does not have any of the advanced

CPU features. We also did not have the means to develop

a cycle accurate model of the microcontroller.

 ≅

Fig. 1. Power reduction at different abstration levels.
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III. POWER MEASURING

The granularity of our power estimator will be at the

instruction level. Determining the power consumed for

each instruction will require a physical measurement to

be made. The energy consumption is given by Equation 2,

E = P * T  (1)

In Equation 1, P is defined as the average power over

the time period T. The time period of our measurement

will be the clock frequency of the microcontroller. The

power is defined by Equation 2.

P = I2*R (2)

We are able to determine the power the microcontroller

is consuming using Equation 2. To perform the measure-

ment, we used a shunt resistor on the power supply of the

microcontroller, shown in Fig. 2. We then used Equation

3 to find the energy used by the microcontroller, where n

is the number of cycles to execute the instruction, and t is

the clock period.

E = (I2*R)*(n*t) (3)

The PIC16F877A is a simple 8-bit processor that sim-

plifies the measurements that need to be taken. The

instructions are executed in a two-stage pipeline, as

shown in Fig. 3. The two stages are broken into instruc-

tion fetch (IF), and instruction execute (EX). The EX

stage requires 4 clock cycles to complete. When calculat-

ing the energy, we view every 4 clock cycles as a sample.

The sample we take covers the 4 cycles for execution and

the IF. We consider each sample as one complete instruction,

since the fetch is independent of the instruction type, and

the power consumption is captured, since it is pipelined.

It is also important to know some basic information

about the PIC architecture. The PIC is an 8-bit Harvard

accumulator-based CPU. The data memory of the PIC

serves as the registers for the CPU, and is broken down

into 4 memory banks. The PIC is able to access a register

or immediate values for each instruction. Fig. 4 gives a

basic block diagram for the PIC architecture.

An important aspect of the power measuring experi-

ment is the accuracy of the measurement being taken. We

created a measuring procedure that is independent of the

microcontroller’s clock speed. The voltage across the shunt

resistor was connected to a National Instruments (NI,

Austin, TX, USA) PXI-5112 100 MHz 8-bit oscilloscope.

The power supply was set to 5.5 V, to compensate for the

voltage drop that was dissipated across the shunt resistor.

The calculations for energy are computed using a mix-

ture of NI’s LabView and SignalExpress. The current is

found by subtracting the voltages across the shunt resis-

tor, and dividing by the resistance of the shunt resistor.

The NI software is used to determine the number of sam-

ples that are in a clock cycle, and finds an average current

for the clock cycle. This data would allow us to monitor

the energy at the clock cycle time frame. We chose to

work at the instruction level time frame, and find the

average current for four clock cycles. To achieve better

results, a large number of instructions were captured, and

the average current was found. Once the current was

found, the energy was determined, and all the data out-

putted to data file.

IV. ENERGY CONSUMPTION OF ASSEMBLY
INSTRUCTIONS

The energy consumed is dependent upon the power

supply of the microcontroller, along with the clock fre-

quency. For this study, we kept the power supply on the

microcontroller fixed to approximately 5 V, and allowed

for a range of clock frequencies. 

The PIC16F877A has a total of 35 instructions, and we

Fig. 2. Power measuring technique. NI: National Instruments,
PIC: peripheral interface controller.

Fig. 3. Peripheral interface controller (PIC) pipeline structure.

Fig. 4. Peripheral interface controller (PIC) architecture block
diagram.
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looked at finding the energy for 32 of these instructions.

The instructions that were not looked at were CALL,

SLEEP, and RETIFE. The SLEEP function was difficult

for us to measure, as we were unable to isolate the

SLEEP function in our test plan. The RETIFE instruction

was not examined, due to interrupts not being evaluated

in this paper, but will be examined in the future. The

CALL instruction was run, but we combined the results

with Return from subroutine instruction, since it is com-

mon to run the two instructions in a pair.

Each instruction was measured independently, and ran

1,000 times each. Fig. 5 shows an example of the code

that was run to monitor the energy. The 1,000 times run

ensured that different values were executed. Also, each

instruction was run on 4 different operand values, and on

5 different registers. This data would tell us if all the

instructions consumed the same amount of energy, or if

the operands and register affect the energy consumption.

The immediate values and operands were chosen at ran-

dom. When using the register, each of the four banks was

tested.

After all the testing was done on each of the 32 instruc-

tions, a number of interesting conclusions were developed.

Each instruction did have a different energy consump-

tion. The current draw for each instruction fell in the

range of 6 mA to 8 mA, which is consistent with the

datasheet that states a typical current draw of 7 mA. The

operand did contribute to the change in current, but the

results, which ranged from 0.5% to 3%, are insignificant.

The memory bank that was used as a register also played

a roll in the current values. The second memory bank

consistently had a lower current compared to the other

register banks, by up to 10%. The clock frequency had

little change to the current draw from the power supply.

The 16 MHz, 8 MHz, and 4 MHz values were fairly

equal, and the 2 MHz clock had a 9% difference to the

current. Table 1 shows the energy required for each

instruction, for frequency between 16 MHz and 2 MHz.

When comparing the results of this paper with [7, 8],

the PIC microcontroller showed similar behavior to [7].

The main difference between our work and the work in

[7], is that the register values had a significant impact on

the power consumption.

Using the results from Table 1, a practical example of

running a one iteration of a FIR filter can give an estimate

of the energy consumed in the operation. The FIR filter

was created in a high-level language C, and then com-

piled to get the assembly instructions needed. Simple

code for a 32-tap FIR filter is expressed as follows:

for(x=0;x<32;x++)
 output += coeff[x]*data[x];

The C code compiles into a total of 754 assembly instruc-

Table 1. Energy consumption for each PIC microcontroller instruction

Instruction

Energy 

(nJ)

16 MHz

Energy 

(nJ)

8 MHz

Energy 

(nJ)

4 MHz

Energy 

(nJ)

2 MHz

ADDLW 1.26 2.58 5.21 9.53

ADDWF 1.32 2.87 5.35 8.69

ANDLW 1.20 2.56 4.99 9.99

ANDWF 1.42 2.92 5.71 10.63

BCF 2.34 2.69 5.22 9.88

BSF 1.43 2.77 5.53 11.28

BTFSC no skip 1.20 2.40 4.92 9.43

BTFSC skip 1.06 2.22 4,41 8.75

BTFSS no skip 1.18 2.19 4.41 8.73

BTFSS skip 1.06 2.23 4.28 8.67

CLRW/CLRF 1.29 2.56 5.27 7.56

CLRWDT 1.28 2.55 4.37 9.87

COMF 1.37 2.83 5.61 10.19

DECF 1.43 2.83 5.69 9.16

INCF 1.39 2.84 5.66 11.02

IORLW 1.25 2.54 4.99 6.50

IORWF 1.41 2.78 5.54 10.32

MOVLW 1.44 2.73 5.54 9.49

MOVF 1.45 2.88 5.82 9.56

MOVWF 1.48 2.92 5.73 11.05

NOP 1.43 2.56 5.06 10.09

RETLW 4.43 8.20 16.62 34.83

RETURN 4.11 8.42 10.67 33.35

RLF 1.33 2.94 5.59 11.17

RRF 1.45 2.89 5.81 9.54

SUBLW 1.33 2.62 5.47 10.64

SUBWF 1.42 2.87 5.82 9.08

SWAPF 1.23 2.79 5.58 9.74

XORLW 1.42 2.89 5.88 12.18

XORWF 1.46 2.81 5.90 10.87 Fig. 5. Example of code to test individual instruction.
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tions. The code has a main section to implement the for

loop, and one subroutine to perform multiplication, since

the PIC does not have a hardware multiplier. The filter

coefficients and data are randomized, and analysis from

the simulator shows that, using a 2 MHz clock, the total

energy required would be 26,205 nJ. Understanding the

energy requirement of each module in the software code

is vital to predicting the battery life of a mobile device. 

V. DYNAMIC FREQUENCY CONTROLLING

A microcontroller typically runs on a single frequency

within the applicable range of the clock input. This fre-

quency value, besides driving the circuit, is used in the

software implementation to manage time-critical opera-

tions, such as communication routines, timing, or delays.

Consequently, varying the clock input frequency affects

the overall system operations.

To enable the DFC technique on a microcontroller with-

out on-chip customization, system-level modification is

considered. This yields a system applicable to any possi-

ble microcontroller. Instead of the typical scheme where

a fixed oscillator feeds the microcontroller, the clock gen-

erator module takes control of the frequency input. The

clock generator module is tied up to the system to enable

the DFC feature, and is designed to be programmable by

software. The programmable clock generator can be cus-

tomized, either by loop-back control from the microcon-

troller or by external logic, and serves the operation of

dynamic frequency control. The target microcontroller will

be configured to get an external clock as the clock input,

driven by the clock generator module. This scheme enables

a microcontroller to run by the generated frequency, with-

out any concerns of such controls. This design is made

taking a generic approach that enables users to fully con-

figure their own logic for clock control mechanisms.

The primary design of the system attempts to avoid

hardware modification at all costs, to enable this system

to be usable in a general application. This means only the

software part is altered to deal with a system change, not

the hardware.

Fig. 6 shows the designed system scheme with the

DFC feature. The clock generator module actively feeds

the clock, along with the clock’s information, to the

microcontroller. The clock generator is designed using a

field-programmable gate array (FPGA) device incorpo-

rating a soft-core processor, which provides programma-

bility and flexibility to the module. The clock generator is

driven by software, and can be programmed using a high-

level language. This enables users to design their own

mechanism on the clock generator module, i.e., a clock

signal controlled by external logic, or by loopback con-

trol from the microcontroller itself. This scheme makes

no modification to the microcontroller, beside the addi-

tional software library required for adjusting the internal

logic towards the clock variations.

An FPGA with a soft core CPU is not required for the

DFC. It was however used for its ability to manipulate

the frequency by examining many outside factors, such

as determining the throughput of the system. A complex

programmable logic device (CPLD) can be used that will

lower the power consumption of the clock generator, and

still provide the functionality of having algorithms to

determine the necessary clock frequency needed for the

embedded system. It is also possible for the microcon-

troller to determine the clock speed needed, and set its

own clock frequency, using a set of fix oscillators con-

nected to a multiplexer.

A. Microcontroller Module

A microcontroller is typically designed to work with

one single frequency during run time. In many compilers,

the feeding frequency is intensely used for generating

time-related instructions. All of these operations are cre-

ated at the compilation time, thus the feeding frequency

information has to be provided at compile time. This

restriction has limited the microcontroller to work in only

one single frequency, because any subsequent modifica-

tions will collide with all the compiled instructions, and

cause malfunctions to the system.

So as to enable on-the-fly frequency switching sup-

port, the software has to be redesigned to lean on the cur-

rent feeding frequency, not the initial one. Since the

frequency may change sometime in between operation,

all time-relating components have to be ready to support

the new frequency after the change occurs. This can be

done through the support library that overrides the typical

compiler function. All the time-related routines have to

be replaced by on-the-fly adjustable routines that can

adapt themselves to run on a new clock source.

When writing software for the microcontroller, most

developers will write device drivers, or use device drivers

that are part of a complier. Most compliers will include a

C library that fully supports all operations for their PIC

microcontroller development board. The C library is

usable under the normal operating condition with one

predefined clock frequency. During compile time, the

clock frequency information is asked, in order to generate

the corresponding assembly code and machine code. The

compiler uses the clock frequency as a constant. Thus,

any modifications to the provided library make no change.

To enable scaling clock input under this environment,

some parts of the library have to be replaced by the cus-

tomized one. The replaced routines and their justifica-

tions are listed in Table 2.

B. Microcontroller Development Board
Implementation Example

A number of input and output devices were used to
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demonstrate the effectiveness in adding DFS to an off-

the-shelf microcontroller. Only time-based input and out-

put were used, because they are the only devices that can

be affected by adding DFS. The devices used for this

paper include: software timers (periodic interrupt based),

liquid crystal display (LCD) device driver (for-loop based

time delay), 7-segment light-emitting diode (LED; time

multiplexing), and universal asynchronous receiver and

transmitter (UART) serial communication (baud-rate gen-

erator).

C. Microcontroller Library

A high-level library was developed, to facilitate users

to easily work with the DFS components, and use the

DFS without concerns of clock changes affecting the

software. The software libraries provided in this research

are classified into three categories. A visual guide to the

software libraries is shown in Fig. 7.

1. Core library – Handles the present clock frequency,

and manipulates all other components affected by

frequency input, such as the interrupt service routine

(ISR).

2. Communication library – Controls I/O operations of

communication module. In the project, the UART

routines are implemented.

3. Peripheral library – Manipulates the input/output of

the time-relying components, such as 7-segment

display or LCD display. 

1) Communication Library

To support the communication module, UART routines

are implemented, in addition to the library provided by

the compiler. Since the clock variation affects the input

frequency for the baud rate generator; it has to be reset in

every dynamic clock change. This library has the capabil-

ities to adjust the baud rate generator to meet the desired

Table 2. Microcontroller library modifications to support dynamic frequency scaling

Routine Typical library Modification

Delay The generate code is an inline routine calculated 

by the initial clock frequency to yield the 

number of clock cycles used for delay.

The number of clock cycles to delay is calculated by 

input frequency at the current.

Timing 

interrupts

User must calculate the counter and set the 

initial value in the count-up register, based on 

the fixed initial frequency input.

The counter is calculated based on the present input 

clock frequency.

Baud rate generator 

in communication 

libraries

Hardware generates baud rate, which is being 

set by the control register while compiling.

The control registers will be set the new value according to 

the desired baud rate every time that the clock frequency 

changes. This is done through interrupt service routine.

Interrupt service 

routines (ISR)

ISR is predefined and opened for the user to add 

custom logics.

Since the ISR is used when the clock changes, the library 

facilitates the user by providing the flag bit that the user 

can define the additional custom logic to respond to the 

frequency change.

Device initialization 

routines

Not needed. Open for user to code. A device initialization routine is needed in order to configure 

the device to run in a dynamic frequency scaling environment.

Other routines Some library routines provided by compiler 

software may be usable, since it refers to 

aforementioned routines, such as delay function.

Provide new sets of library routines that bank on the 

modified library.

Fig. 6. Dynamic frequency scaling system scheme. FPGA: field-
programmable gate array.

Fig. 7. High-level overview of software libraries for dynamic
frequency controlling.
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baud rate with a given input clock. Typically, the baud

rate generator setting can be obtained from the lookup

table in the microcontroller unit (MCU)’s datasheet. In

this circumstance, the baud rate setting is overridden by

the calculation. This calculation is automatically made in

the interrupt routine.

2) Peripheral Library

To make interfacing easier for programmers who want

a layer of abstraction away from the DFS manipulation, a

set of drivers was created that hides the introduction of

the core and communication library. This library is only

provided to make programming easier, and gives the pro-

grammer access to time varying hardware drivers.

VI. TEST APPLICATION

A sample application was created to verify the concept

of the external hardware addition of DFS, which is possi-

ble for commercial microcontrollers. The DFS clock gen-

erator module was designed on an FPGA. An FPGA is

not required and lower power devices can be used. The

clock generator was designed to operate between 0 Hz to

20 MHz. The DFS was able to generate 64 possible clock

frequencies to the microcontroller. The clock generator

can be configured in a high speed mode (20 MHz to 1.5

kHz) or low speed mode (5 kHz to 78 Hz) configuration.

A listing of the clock frequencies available is shown in

Table 3.

On the microcontroller, an example application was

written that used the serial RS-232 protocol, software

periodic timers, 7-segment LEDs, and LCD display. The

microcontroller was connected to a PC that delivered I/O

bound input. The microcontroller would perform calcula-

tions on the incoming data, and display the results on the

LCD display. The software periodic timer was created to

have a real-time clock. The periodic timer kept the cur-

rent system time and updated the 7-segment LEDs. Fig. 8

shows how the software library was interfaced in this

design.

A. Power Savings Test

In order to get an understanding of how energy could

be saved by using the DFC, a test was conducted on a

FIR digital filter. Signal filtering is a common task that

many embedded systems required. The experiment was

setup to measure a 32-tap FIR filter, with a sampling rate

of kHz. 

A top clock frequency for the PIC microcontroller was

set to 16 MHz. The 16 MHz clock was chosen arbitrarily,

and any clock frequency that can maintain a 1 kHz sam-

pling rate could be used; this example is to show the sav-

ings one could achieve using the frequency available in

our sample DFC. The energy required taking an analog-

to-digital converter (ADC) sample (running the FIR filter

for one iteration) and wait for the next sample, using a

static clock of 16 MHz, was approximately 8,880 nJ. By

having the DFS system use 16 MHz to run the FIR filter

code only, and then scale down the clock to 2 MHz to

wait until the next sample needs to be processed, the

same set of operations required approximately 8,330 nJ.

A savings of approximately 6.2% was achieved, by scal-

ing the clock by a factor of 8.

A larger reduction can be made if the DFC system uses

16 MHz to run the FIR filter, and then scales down the

clock to 20 kHz. Using this new setup, the total energy

required is 7,925 nJ. The total saving of 10.6% is achieved,

instead of always running the clock at 16 MHz.

VII. CONCLUSION

The DFS scheme for microcontroller was successfully

developed to help microcontrollers operate in a DFS

environment, without any hardware modifications. The

PIC library software is implemented to facilitate users to

develop applications, with the DFS hidden in the abstrac-

tion layer. Instead of a one fixed clock frequency, the

clock generator module can provide any set of frequen-

cies to supply the microcontroller. The libraries are avail-

able from the authors.

The results show the range of frequency that can be run

in practice, ranging from 100 kHz to 20 MHz. Techni-

cally, the PIC16F877a is able to run on fixed frequency

ranging from DC to 20 MHz, but less than 500 kHz fre-

quency prevented other components that needed a high

clock input, from working properly.

In the communication testing with a PC at a fixed baud

rate, the microcontroller shows the ability to handle the

data transfers with the various clock inputs. Some stum-

bles occurred when the source clock and the generating

baud rate are too close, for example, when communicat-

ing at a high baud rate (e.g., 19,200 kbps) and the feeding

clock is below 1 MHz. In the digital clock application,

the precision of the clock is the same as the implementa-

tion on the PIC with the fixed clock source.

By using the power estimating software, a developer is

able to determine the power being consumed at each fre-

quency speed. The developer will be able to set the maxi-

mum frequency to determine the power consumption at

Fig. 8. Software interaction through the dynamic frequency
controlling core library.
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peak performance. Energy savings will be gained as the

DFS adjusts to maintain the throughput of the embedded

system.

The work in this paper shows a low-cost and effective

solution to improving the power consumption in com-

mercial microcontrollers. While this work has shown a

modest improvement of 10% in real applications, we

believe additional improvements can be gained with soft-

ware optimization. This work is just a starting point in

creating a power management system for embedded

microcontrollers. Future work is needed to understand

the potential savings to other microcontrollers and under-

stand which applications could benefit the most from the

added power management system. The simple hardware

and software library will allow for any developer to use

our system with minimum development time overhead.
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7 12.5 625 39 2.5 125
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24 4 200 56 1.7 87
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31 3.1 156 63 1.5 78
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