DOI QR코드

DOI QR Code

Combined effects of temperature and arsenic on hematological parameters of tilapia Oreochromis niloticus

틸라피아의 혈액성상에 미치는 온도와 비소의 복합적 영향

  • Jeong, Ji-Won (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Young-Sug (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 정지원 (부경대학교 수산생명의학과) ;
  • 김용석 (부경대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2011.08.08
  • Accepted : 2012.03.10
  • Published : 2012.04.30

Abstract

Experiments were carried out to determine the hematological changes in freshwater tilapia Oreochromis niloticus, after water temperature (20, 25 and $30^{\circ}C$) and arsenic concentrations (200, and 400 ppb) exposure 20 days. The RBC count and hematocrit (Ht) were significantly increased in As 400 ppb and water temperature $30^{\circ}C$. Hemoglobin (Hb) was significantly increased under combined As (200 and 400 ppb) and water temperature $30^{\circ}C$. The tilapia exposed to water temperature $30^{\circ}C$ and As concentration 400 ppb increase significantly in calcium concentration. The high concentrations of total protein and glucose concentrations were observed at water temperature $30^{\circ}C$ and As concentration 400 ppb. A significant increment GOT and GPT activities in the tilapia serum noticed at water temperature (25 and $30^{\circ}C$) and As concentration (200, 400 ppb). These results indicate that tilapia can be affected by high water temperature ($30^{\circ}C$) and As concentration (400 ppb) in terms of inorganic matter, organic matter and enzyme activity in serum.

본 연구는 어류의 온도변화 (20, 25 및 $30^{\circ}C$)에 따른 생리적 변동에 미치는 비소 (200 및 400 ppb)의 영향을 파악하기 위하여 틸라피아, Oreochromis niloticus를 대상으로 이들의 혈액학적 변동을 검토하였다. 틸라피아의 적혈구 수는 온도 $30^{\circ}C$의 200 ppb 이상, Ht는 온도 $25^{\circ}C$$30^{\circ}C$의 400 ppb, Hb 농도는 온도 $30^{\circ}C$의 200 ppb 이상에서 유의한 증를 나타냈다. 혈청 무기성분인 Ca농도는 수온 $30^{\circ}C$의 400 ppb에서 유의하게 증가하였으나, Mg농도는 변동을 나타내지 않았다. 혈청 총 단백질농도는 온도 25 및 $30^{\circ}C$의 비소농도 400 ppb, glucose농도는 온도 $25^{\circ}C$의 200 ppb 비소농도, 온도 25 및 $30^{\circ}C$의 400 ppb 비소농도에서 유의하게 증가하였다. 혈청 GOT활성은 온도 25 및 $30^{\circ}C$의 200 ppb 이상의 비소농도, GPT활성은 온도 20, 25 및 $30^{\circ}C$의 200 ppb 이상의 비소농도에서 유의한 증가를 나타냈다. 이상의 결과 및 논의에서 틸라피아의 혈액성상, 혈청의 무기, 유기농도 및 효소활성은 비소농도 200ppb 이상에서 부분적으로 영향을 받고 있으며, 이 영향은 온도가 높을수록 영향이 클 것으로 생각된다.

Keywords

References

  1. Akter, K.F., Owens, G., Davey, D.E. and Naidu, R.: Arsenic speciation and toxicity in biological systems. Rev. Environ. Contam. Toxicol., 184:97-149, 2005. https://doi.org/10.1007/0-387-27565-7_3
  2. Ayotte, J.D., Montgomery, D.L., Flanagan, S.M. and Robinson, K.W.: Arsenic in groundwater in eastern New England:accurrence, controls, and human health implications. Environ. Sci. Technol., 37:2075-2083, 2003. https://doi.org/10.1021/es026211g
  3. Bhattacharya, A. and Battacharya, S.: Induction of oxidative stress by As in Clarias batrachus: involvement of peroxisomes. Ecotoxicol. Evioron. Saf., 66:178-187, 2007. https://doi.org/10.1016/j.ecoenv.2005.11.002
  4. Drastichova, J., Svobodova, Z., Luskova, V. and Machova, J.: Effects of Cadmium on Hematological Indices of Common Carp(Cyprinus carpio L.). Eviron. Com. Toxicol., 72:725-732, 2004.
  5. Eisler, R.: Arsenic hazards to fish, wild life and invertrates: a synoptic review. U.S. Fish. Wildl. Serv. Biol., 85:1-12, 1988.
  6. Federici, G., Benjamin, J.S. and Richard, D.H.: Toxicity of titinium dioxide nanoparticles to rainbow trout(Oncorhynchus mykiss):gill injury, oxidative stress, and other physiological effects. Aqua. Toxicol., 84:415-430, 2007. https://doi.org/10.1016/j.aquatox.2007.07.009
  7. Figueiredo, A., Fontainhas-F, A., Peixoto, F., Rocha, E. and Reis-H, M.A.: Effects of gender and temperature on oxidative stress enzymes in Nile tilapia Oreochromis niloticus exposed to paraquat. Biochem. Physiol., 85:97-103, 2006.
  8. Hall, L.W Jr. and Burton D.T.: Effect of power plant coal pile and coal waste runoff and leachate on aquatic biota: an overview with research recommendations. Critic Reviews in Toxicol., 10:287-302, 1982. https://doi.org/10.3109/10408448209003369
  9. Heather, B., Jeff, G.R. and Patricia, M.S.: Arsenic exposure alters hepatic arsenic species composition and stress-mediated gene expression in the common killifish(Fundulus heteroclitus). Aquat. Toxicol., 77:257-266, 2005.
  10. Ishaque, A.B., Tchounwou, P.B., Wilson, B.A. and Washington, T.: Developmental arrest in Japanese medaka(Oryzias latipes) embryos exposed to sublethal concentrations of atrazine and arsenic trioxide. J. Environ. Biol., 25:1-6, 2004.
  11. Karagas, M.R., Stukel, T.A. and Tosteson, T.D.: Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Environ. Health., 205: 85-94, 2002.
  12. Kobayashi, Y., Cui, X. and Hirono. S.: Stability of As metabolites As triglutathione $(As(GS)_3)$ and methyl As diglutathione $(CH_2As(GS)_2)$, in rat bile. Toxicol., 211:115-123, 2005. https://doi.org/10.1016/j.tox.2005.03.001
  13. Larsen, E.H. and Fransesconi, K.A.: Arsenic concentrations correlate with salinity for fish taken from the North Sea and Baltic Waters. J. Mar. Biol., 83:283-284, 2003. https://doi.org/10.1017/S0025315403007082h
  14. Larsson, A., Lehtinen, K.J. and Haux, C.: Biochemical and hematological effects of a titanium dioxide industrial effluent on fish. Bull. Environ. Contam. Toxicol., 25:427-435, 1980. https://doi.org/10.1007/BF01985550
  15. Lavanya, S., Ramesh, M., Kavitha, C. and Malarvvizhi, A.: Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chem., 82:977-985, 2011. https://doi.org/10.1016/j.chemosphere.2010.10.071
  16. Liao, C.N., Chen, B.C., Singh, S., Lin, M.C., Liu, C.W. and Han, B.C.: Acute toxicity and bioaccumulation of arsenic in tilapia(Oreochrmis mossambicus) fron an blackfoot disease area in Taiwan. Environ. Toxicol., 18:252-259, 2003. https://doi.org/10.1002/tox.10122
  17. Limuro, Y., Nishiura, T., Hellerbrand, C., Behrns, K.E., Schoonhoven, R., Grisham, J.W. and Brenner, D.A.: $NF{\kappa}B$ prevents apoptosis and liver dysfunction during liver regeneration. J. Clin. Invest., 101:802-811, 1998. https://doi.org/10.1172/JCI483
  18. Li, Z.H., Josef, V., Vladimir, Z., Roman, G., Jana, M., Jitka, K. and Tomas, R.: Hepatic antioxidant status and hematological parameters in raibow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem. Biol. Int., 183:98-104, 2010. https://doi.org/10.1016/j.cbi.2009.09.009
  19. Mattsson, K., Lehtinen, K. J. and Tana, J.: Effect of pulpmill effuents and restricted diet on growth and phygiology of rainbow trout(Oncorhynchus mykiss). Exotoxicol. Environ. Saf., 49:144-154, 2001. https://doi.org/10.1006/eesa.2001.2049
  20. Min, E.Y. and Kang, J.C.: Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pest. Biochem. Physiol., 92:138-143, 2008. https://doi.org/10.1016/j.pestbp.2008.07.007
  21. Mukgerjee, A., Sengupta, M.K., Hossain, M.A., Ahamed, S., Das, B., Nayak, B., Lodh, D., Rahman, M.M. and Chakraborti, D.: Arsenic contamination in groundwater:a global perspective with emphasis on the Asian scenario. Health. Popul. Nutr., 24:142-163, 2006.
  22. Nemcsok, J. and Boross, L.: Comparative studies on the sensitivity of different fish species to metal pollution. Acta Biol. Hung., 33:23-27, 1982.
  23. Oliverira, C.A., Neto, R., Mela, M., Silva, P.H., Randi, M.A.F., Rabitto, I.S., Alves, S.R.M. and Pelletier, E.: Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environ. Research., 101:74-80, 2006. https://doi.org/10.1016/j.envres.2005.11.005
  24. Phillips D.J.H.: The chemical forms of arsenic in aquatic organisms and their interrelationships. Arsenic in the Environment. Part I. Cycling and Characteristics., 263-288, 1994.
  25. Roy, S. and Bhattacharya, S.: Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicol. Environ. Saf., 65:218-229, 2006. https://doi.org/10.1016/j.ecoenv.2005.07.005
  26. Smet, S. M. and Blust, R.: Stress Responses and Changes in Protein Metabolism in Carp Cyprinus carpio during Cadmium Exposure. Ecotoxicol. Environ. Saf., 48:255-262, 2001. https://doi.org/10.1006/eesa.2000.2011
  27. Suvetha, L., Ramesh, M. and Saravanan, M.: Influence of cypermethrin toxicity on ionic regulation and gill Na+/K+-ATPase activity of a freshwater teleost fish Cyprinus Carpio. Environ. Toxicol. Pharmacol., 29:44-49, 2010. https://doi.org/10.1016/j.etap.2009.09.005
  28. Tripathi, S., Sahu, D.B., Kumar, R. and Kuma, A.: Effect of acute exposure of sodium arsenite (Na2AsO3) on some hematological parameters of Clarias batrachus (common Indian catfish) in vivo. Environ. Health., 45:183-188, 2003.
  29. Waring, C.P., Stagg, R.M. and Poxton, M.G.: The effects of handling on flounder(Platichthys flesus L.) and atlantic salmon(Salmo salar L.). J. Fish. Biol., 41:131-144, 1992. https://doi.org/10.1111/j.1095-8649.1992.tb03176.x
  30. Wendelaar bonga, S.E.: The stress response in fish. Physiol., 77:591-625, 1997.
  31. Wilson, R.W. and Taylor, E.W.: The physiological responses of freshwater rainbow trout, Oncorhinchus mykiss, during acutely lethal copper exposure. J. Comp. Physiol.B, 163:38-47, 1993. https://doi.org/10.1007/BF00309663
  32. Yang, J.L. and Chen, H.C.: Serum metabolic enzyme activities and hepatocyte ultrastructure of common carp after gallium exposure. Zool. Stud., 42:455-461, 2003.

Cited by

  1. Effects of Water Temperature Change on the Hematological Responses and Plasma Cortisol Levels in Growing of Red Spotted Grouper, Epinephelus akaara vol.19, pp.1, 2015, https://doi.org/10.12717/DR.2015.19.1.019