학술/기술기사

실제규모 토석류 실험을 위한 현장연구시설# 소개

Introduction to Field Research Facility for Real-scale

Debris Flow Experiments

김승은| 강릉원주대학교 토목공학과 석사과정 ktwmylove88@naver.com

백 중 철| 강릉원주대학교 토목공학과 교수 paik@gwnu.ac.kr

이 상 돈 | ㈜이산 상무 Isd4524@hanmail.net

한 광 두 | ㈜이산 부사장 hankd36@isg.kr

1. 서 론

2000년대에 들어 강원도, 충청도, 전라도 등의 산지유역에서 태풍 및 집중호우로 대규모 토석류가 발생하여 피해가 급증하고 있는 추세이다(유병옥 등, 2006; 장범수 등, 2007; 채병곤 등, 2008). 또 한, 지난해 7월 말 서울 우면산 일대와 춘천 천전리 에서 발생한 토석류는 심각한 물적·인적 피해를 일으켰다(김영일과 백중철 2011a).

토석류(debris flow)는 물-토석 혼합체(fluidsolid mixtures, 물속에 다양한 입경의 유사와 수 로 퇴적물이 집중적으로 분포된 것)가 흐르는 동적 현상(질량이동 또는 흐름)을 말한다(Iverson. 1997; Takahashi. 2007). 토석류에서 총유사의 농도는 정지된 굳지 않은 토석의 상태에 따라 조금 씩 다르지만. 전형적으로 50% 이상의 체적 농도 값 을 가지며, 토석 입자 간 그리고 토석과 유체 간의 다양한 상호작용은 토석류 거동에 중요한 역할을 한다(Pierson & Costa, 1987; Iverson, 1997). 토 석류는 주로 강우, 융설, 화산, 지진 등에 기인하여 발생하며 우리나라에서는 대부분 여름철 집중호우 에 의해서 발생하게 된다. 또한, 토석류는 전면부에 큰 구성물들이 밀집되어있어 그 규모를 예측하기가 어렵고(유병옥 등, 2006), 특성상 순식간에 빠른 속 도로 사태가 발생하므로 징후 발견 후 대피할 수 있 는 시간적 여유가 없다. 우리나라는 국토의 70% 이 상이 산지로 이루어져 계곡 하부에 가옥이 위치한 경우에는 토석류에 노출될 수밖에 없다.

1997년부터 2006년까지 자연재해로 인한 전체

이 연구시설 구축은 국토해양부의 연구비('08지역기술혁신B01-1, 수충부 및 토석류 방재기술 연구단) 지원으로 이뤄짐.

사망자는 1,189명으로 집계되고 있으며, 이 중 토석류 등 사면붕괴로 인한 사망자 는 321명으로 전체 사망자의 약 27%를 차지하고 있다(박병수, 2008). 토석류로 인한 피해를 절감하고 방재대책을 세우 기 위한 여러 연구가 수행되고 있으나, 토석류의 발생위치를 사전에 예측하는 것은 어려울 뿐만 아니라, 발생위치를 예 측한다 해도, 실제 토석류의 영향범위와 충격력 등은 유사농도와 강우 특성에 따 라 다르기 때문에 예측이 어렵다. 따라서

토석류 기작에 대한 과학적 이해를 구하고, 그간 축 적한 지식 및 개발된 토석류 저감 기법의 적용성 평 가를 수행하여 세계적 수준의 실제규모(realscale) 토석류 실험을 계획하였다.

2. 국내외 실험 사례

토석류는 재해를 일으키는 매우 위험한 자연 현 상이며, 그 규모에 따라 하류부에 큰 피해를 발생시 킬 수 있다. 이러한 토석류의 발생을 억제하거나 토 석류 피해를 저감하기 위해서는 토석류의 유동학적 특성에 대한 과학적인 이해가 선행되어야 한다. 이 에 외국의 여러 나라에서는 오래전부터 토석류의 발생 및 유동 메커니즘의 규명과 재해 발생 시 원인 분석 등 체계적인 연구를 수행하고 있는데 반해 우

리나라는 10여 년 전부터 연구가 진행되어왔지만, 아직 기초 단계 에 머물러 있으며, 실험실 실험과 같은 기초적인 실험만이 가능한 중소규모의 장치를 몇몇 연구기 관에서 보유하고 있는 실정이다.

2.1 국외 연구사례

미국은 미지질조사국(USGS,

그림 1. USGS 대규모 토석류 물리 모형실험 장치

U.S Geological Survey)에서 1994년부터 지금까 지 100m에 이르는 대규모 토석류 실험 수로에서 초음파 수위센서를 포함하는 첨단 장치를 이용하여 지속적으로 다양한 성질의 토석-물 혼합체로 재현 된 토석류의 유동 및 퇴적 특성을 분석하고 있다 (Iverson, 2003). 그림 1에서 보인 바와 같이 실험 수로는 폭이 2m, 높이가 1.2m인 사각형 수로이며 경사부 부분 길이는 약 82m이고 수로경사는 31°이 다. USGS에서는 매년 새로운 성질의 재료를 이용 하여 실험하고 있으며 이를 통해 토석류 재해지역 을 대상으로 Hazard Map 제작 및 재해 예방 시스 템 구축 등의 자료로 활용하고 있다(김영일, 2012).

일본은 1970년대부터 토석류에 대해 본격적으로 연구에 착수하였으며 토석류 흐름에 대한 기초조사 를 위한 시험기를 제작하여 실험 연구에 활용하고 있으며(Takahashi, 1980, 2007), 방재과학기술연

그림 2. 일본 방재과학기술연구소 토석류 수리 모형실험 (좌) 토석류 흐름 박스, (우) 인공강우 장치

구소 기초실험동 내에 토석류의 흐름의 유속 및 기 타 흐름에 대한 기초조사를 위한 시험기를 제작하 여 연구에 활용하고 있다.

2.2 국내 실험사례

자연에서 발생하는 토석류는 규모가 매우 크기 때문에 실제 크기의 실험으로 모사하기가 쉽지 않 다. 또한, 토석류는 구성입자의 종류 및 크기, 지형 조건, 강우량 등 매우 다양한 조건에 의해 영향을 받으므로 모형실험에 모두 반영하기란 현실적으로 어려움이 많다. 이런 이유로 최근 복잡한 조건을 단 순화시켜 토석류의 특징과 거동을 정량적으로 평가 하기 위해 제한된 조건에서 토석류 모형실험을 수 행하는 연구가 늘고 있다(김영일, 2012).

김기환 외(2008)는 산사태 발생 시 토석류 확산 형태와 흐름 속도에 대한 실내 모형실험을 수행하 였으며, 함수비에 비례하여 산사태의 확산범위가 넓게 퍼지고 확산속도 또한 빨라지는 것을 실험을 통해 확인하였다. 실험에 사용한 시설은 그림 3에 서 보인 바와 같이 산사태가 발생하는 부분의 수로 는 길이 0.65m로 제작하였으며, 확산판은 1.2m× 0.9m로 제작하여 이용하였다.

김진환 등(2010)은 토석류 발생 시 나타나는 충 격력의 특징을 파악하고자 2가지 자갈과 혼합시료 를 이용하여 토석류 모형실험을 수행하여, 토석류

그림 3. 실내 모형 산사태 흐름장치(김기환 등, 2008)

에 의해 발생되는 충격력은 토석류의 양에 비례하 여 나타나지 않으며, 토석류를 구성하는 입자의 크 기에 따라 다양하게 나타남을 밝혔다. 그림 4에 보 인 모형실험장치의 수로부분 길이는 5m이며, 수로 폭은 0.1m, 높이는 0.2m이다. 수로는 경사조절이 가능하며, 토석류의 토압을 측정하기 위한 토압계 는 수로의 최하단부에 부착하였다.

김영일과 백중철(2011b)은 토석류 수리 실험 장

그림 4. 토석류 충격력 모의실험장치(김진환 등 2010)

비를 제작하여 배수로(도로횡단배수구조물) 내에서 의 토석류 유동 및 퇴적 특성에 대한 실험을 수행하 였다. 그림 5는 토석류 수리 실험 수로의 전경이며, 각각 5m와 3m의 길이를 갖는 접근수로와 배수로 로 구분된다. 다양한 실험 조건을 적용할 수 있도록 수로는 각각 15°~30°와 0°~15°의 범위로 바닥경 사 조절이 가능하며, 토석류는 대용량의 토석 및 유

그림 5. 토석류 수리 실험 수로 및 관측 장비 (김영일과 백중철, 2011b)

량공급장치에서 유입되어 충분히 포화된 후 접근수 로로 유입된다. 이후 배수로로 접어들며 유동 특성 이 달라지는 토석류를 관찰한다.

실험 결과를 통해 수치 모델의 검증 및 Logistic 모형을 제시하여 토석류로 말미암은 배수로의 피해 와 2차 피해를 최소화하기 위한 연구를 수행하고 있다.

3. 실제규모 실험 유역 소개

실험 유역을 선정하기 위해 2008년부터 수행한 현장조사 자료를 바탕으로 정밀조사 후보지역으로 강릉시 왕산면 삽당령 일대와 평창군 진부면 일대 를 선정하였다. 이 두 유역은 강원지역에서 토석류 가 가장 빈번히 발생하는 지역이며, 유역의 규모와 경사 그리고 표토 특성 면에서 우리나라 토석류를 대표할 수 있다고 판단되었다. 정밀조사는 이 두 지역에서 총 30여 개의 유역을 조사하여 실제규모 토석류 현장실험 유역을 선정하였다. 그림 6은 왕 산면 지역에서 대표 조사지역의 유역 및 유로 특성 을 보여준다. 왕산면 유역은 유로의 길이가 길고 경사가 크며, 토양 침식 및 토석류가 빈번히 발생 하여 유로의 중하류 부분 바닥이 대부분 기반암으 로 노출된 구간이 많은 것이 특징이다. 아울러 중

그림 6. 현장조사 지역 현황 (강릉시 왕산면 삽당령 인근) (주) 청색점선 : 흐름방향

상류 계곡에서는 강우 시에만 물이 흐르는 것이 특 징이다. 특히 이들 유역은 국도에서 멀리 떨어져 있어서, 접근하기 위해서는 임도를 따라 멀리 이동 하여야 하며, 산세가 험준하여 GPS 장치와 휴대전 화를 이용하기 어렵다. 따라서 실험을 수행할 때 유역 및 유로특성의 부적절함 이외에 장비의 운반, 유량확보, 무선 관측 장비의 활용 측면에서 어려움 이 있다.

그림 7은 평창군 진부면의 실제규모 토석류 실험 현장의 위치와 유역현황을 보여준다. 왕산면 지역 보다 이지역의 특성은 토석의 대표 입경이 상대적 으로 작으며, 중장비 및 실험장비의 접근, 무선통신 의 활용, 유량의 확보 등이 용이하다는 것이다.

그림 7. 실험 유역의 위치 및 3차원 지형도

로 실험현장으로 선정된 유역의 유로 특성을 보여 준다. 표 1과 그림 8에 나타내었듯이 선정한 유역의 총 길이는 약 810m, 상류부의 평균경사는 35.5°, 최대경사는 약 47°이상, 폭은 최소 1m에서 최대 10m, 유역 내 심도는 최소 2m 이상이며, 1개의 본 류와 7개의 지류로 구성되어있다. 유역 내에는 그 림 8과 같이 만곡부와 암반노출지역 그리고 낙차공 등이 골고루 분포하고 있다.

그림 8. 실험 선정 지역(진부면 봉산리) 유역 현황 (1)합류부에서 바라본 정상; (2)만곡부; (3)낙차공; (4)사방댐; (주)백색점선 : 유역표시, 청색점선 : 흐름방향

표 1. 선정 유역 현황

유역 길이	상류부	하류부	유역 폭
(총 길이)	평균경사	평균경사	(바닥기준)
약 810m	35.5°	5.30°	최소 2m - 최대 10m

평창군 진부면의 여러 조사유역 중 그림 8에 보 인 유역을 최종으로 선정하게 된 이유는 다음과 같 다. 첫째로 발생부의 초기 경사 47°이상. 길이 130m로 충분히 길어 이동체가 큰 운동량을 가지며 둘째, 발생부 길이를 제외한 유역 총 길이는 680m 로 수로 길이도 길 뿐만 아니라 유역 폭이 최소 1m 부터 만곡부의 경우 10m까지 다양하고, 상류부에 서 표토의 심도가 대부분 약 2m 이상이기 때문에 토석류가 이동하는 동안 토석류의 전파. 사면과 유 하부의 침식에 의한 토석류의 성장 그리고 하류부 에서의 퇴적과 같은 유동학적 특성을 관찰할 수 있 다. 셋째, 다른 조사지역과 비교하여 본류와 지류의 구분이 확실하므로 실험 시 충분히 포화시켜야 할 지역과 그렇지 않은 지역을 명확히 구분할 수 있으 며 넷째. 유역 내에 물이 흐르고 있어 강우 후에 실 험 유역을 포화시키는 것이 용이하다. 다섯째, 하류 부에는 사방댐이 설치되어 있어 예상치보다 많은 토석류가 발생하여 사방댐을 월류하더라도 사방댐 이후에 하천과 농지가 있으므로 인명 피해의 위험 이 적을 것으로 예측하며, 마지막으로 여섯째는 유 역 내에 만곡부가 존재하고 암반노출지역과 낙차공 등이 골고루 분포되어 있어 그간 연구해 온 토석류 메커니즘에 관한 내용을 점검하고 배수구조물 피해 저감 공법 등을 시험 평가하는데 적합한 지역이라 고 생각되어 본 지역을 선정하였다.

4. 초기발생량 산정 및 발생장치 제작

토석류 발생을 위해 산정한 물과 토사 각각 300m³의 양은 다음과 같은 순서로 산정하였다. 실 제규모 토석류 실험을 수행하는 과정에서 가장 중 요한 것은 토석류의 초기발생량을 결정하는 것이 다. 초기발생량은 토석류의 규모를 결정지으며 토 석류의 발달에 큰 영향을 미친다. 실험을 진행하기 에 앞서 목표로 하는 토석류의 규모를 결정하여 초 기발생량을 산정하였다. 목표로 하는 토석류의 규 모는 표 2에 제시되어 있다. 표 2에서 토석류의 규 모는 잠재적 결과(potential consequences)를 통 해 결정하였으며, 토석류의 양을 예측할 수 있다. 본 실험에서는 토석이 수로 내에서 정지하지 않고 퇴적예상지점까지 도달하도록 하는 것이 목표이기 때문에 토석류의 규모는 3등급으로 선정하였으며. 목표로 하는 토석류의 양은 10³m³으로 한다. 위의 표에서와 같이 등급이 3인 토석류는 콘크리트 구조

표 2. 토석류의 규모 분류표(Jakob, 2005)

등급	<i>V</i> , 총량	<i>Q₅</i> 첨두유량	<i>B_b</i> 토석류 범람면적	잠재적 결과
1	<102	<5	$<4 \times 10^{2}$	소규모 구조물의 피해
2	10²~10³	5~30	4×10 ² ~2×10 ³	자동차 및 목조 구조물 파괴
3	10 ³ ~10 ⁴	30~200	2×10 ³ ~9×10 ³	콘크리트 구조물 파괴
4	10 ⁴ ~10 ⁵	200~1500	9×10 ³ ~4×10 ⁴	마을의 일부 파괴
5	10 ⁵ ~10 ⁶	1500~1200	4×10 ⁴ ~2×10 ⁵	소도시의 일부 파괴
6	10 ⁵ ~10 ⁶	N/A	>2×10 ⁵	소도시 전체 파괴
7	10 ⁶ ~10 ⁷	N/A	N/A	도시의 일부 파괴
8	10 ⁷ ~10 ⁸	N/A	N/A	도시 전체 파괴
9	10 ⁸ ~10 ⁹	N/A	N/A	수백km*에 이르는 파괴
10	>109	N/A	N/A	수백㎞에 이르는 광범위하고 완전한 파괴

물을 파괴할 정도의 운동량을 가진다.

목표한 토석류의 양은 초기발생량과 흐름이 진행 될 때 연행(entrainment)으로 인해 추가되는 토석 량의 합과 같다. 여기에서 초기발생량을 산정하기 위해 흐름이 진행될 때 추가되는 토석량을 계산하는 것이 필요하다. 하지만 흐름이 진행되는 도중에 추 가되는 토석량을 계산하는 것은 매우 어려운 일이므 로, 본 실험에서는 초기발생량을 결정하기 위해 아 래 식을 사용하였다(Marchi and D'Agostino, 2004).

 $M = 65000 A^{1.35} S^{1.7}$

위 식에서 A는 유역면적(km²)이며, S는 평균경 사(m/m)이다. M은 본래 발생하는 총 토석량이지 만, 본 실험에서 M은 흐름이 진행되는 동안 추가되 는 토석량과 같다고 가정한다. 실험 대상 유역의 면 적은 약 0.2km², 평균경사는 약 0.2m/m로 발생하 는 총 토석량 M은 500m³으로 계산된다. 따라서 초 기발생량은 500m³ 이상으로 산정해야 한다.

USGS에서 실시한 토석류 실험을 기초로 물과 토석의 혼합비는 6:4로 정하였으나 토석류를 퇴적 예상지점까지 이동시키기 위하여 실험 초기부터 실 험이 진행되는 동안 수로에 물을 공급하므로 물의 양을 추가하였다. 따라서 계산된 초기발생량 500m³에 추가한 물의 양 100m³을 포함하여 총 600m³을 수조의 용량으로 설계하였다.

그림 9는 토석류 발생장치의 모식도를 나타낸 것 이다. 그림과 같이 토석류 발생장치는 토조와 수조 로 나뉘어 계곡 정상부를 통과하는 임도 주변에 제 작되었고 전체 크기는 약 13 × 14 × 6(m)이다. 발 생장치 앞부분은 토조, 뒷부분은 수조로 설치하였 고, 두 개의 저장고를 구분하기 위해 그 사이에는 콘크리트벽을 설치하였다. 발생장치를 나누어 제작 한 이유는 후면에서 물을 공급하여 공급 장치 내에 토사가 남아있지 않고 토사와 물이 함께 방류하도 록 하기 위함이다.

그림 9. 토석류 실험 발생장치 측면 모식도

또한, 유역 상류부는 표층이 대부분 화강풍화토 로 이루어져 있어 세굴로 인한 식생 훼손 및 토양 침식과 같은 안전상의 위험을 대비해 상단부에는 합성수지 재질의 도수로를 설치하였다.

5. 관측 항목 및 관련 장비

토석류의 높이와 속도, 용량, 거동 상태를 산정 하기 위하여 유역 내에 초음파 수위센서, 로드셀, 간극수압계, 그리고 초고속 카메라를 설치하여 관 측 값들을 수집한다. 아래 그림은 유하부 사면에 설 치하는 간극수압계의 모식도와 초음파 수위센서와 로드셀의 설치방법을 나타낸 것이다.

그림 10. (좌)간극수압계 설치 모식도; (우)관측 장비 설치방법 일례

유하부 길목에 1~2m를 굴착한 후 로드셀과 데 이터로거를 함께 묻는다. 로드셀을 중심으로 동서 남북 방향에 간극수압계를 설치하여, 유역 내의 간 극수압이 포화되었을 때 유하부를 이동하는 토석류 거동에 대한 자료를 수집한다. 로드셀은 지점 위를 통과하는 토석류의 무게를 측정하고, 초음파 수위

센서는 토석류의 수위를 측정함으로써 관측 지점을 통과하는 토석류의 용량 및 이동 속도 등을 산정한 여 실험장치의 전면부 토조에 담고, 후면부에는 물 다. 초고속 카메라는 유역 내 곳곳에 설치하여 토석 류의 이동 모습을 관측하여 실험 종료 후 영상자료 를 분석하는 데 사용한다.

6. 진행 과정 및 앞으로의 계획

현재는 실험 준비단계로 실험 발생장치는 완성된 상태이다. 그림 11은 토조와 수조의 제작 과정과 완 성된 발생장치의 전경이다. 실험을 위한 토사의 일 시 공급을 위해서 하류부에 있는 사방댐 내의 토석 과 인근 유역에서 확보한 토석을 중장비를 이용하 을 채운다. 실험은 선행강우가 충분히 발생한 직후. 즉 유역 내 지반이 충분히 포화되어 있는 상태에서 실시할 계획이다.

향후 연간 1~2회의 실험을 실시하여 토석류의 거동과 영향에 대해 지속적으로 연구를 수행할 계 획이며, 우리나라의 대표적인 실제규모 토석류 현 장실험센터가 될 수 있도록 많은 노력을 기울을 것 이다. 현재 계획은 강우사상이 충분히 발생한 후인 6~7월 중 실험을 시행할 예정이므로 관련 기관 및 관심 있는 연구자들의 많은 참여와 조언을 바랍니 다. 🧊

그림 11. 실제 규모 토석류 실험 발생장치의 제작 과정 및 완성된 발생장치의 전경

- 1. 김기환, 이동혁, 김대회, 이승호 (2008). 토석류 흐름 상태 특성 파악을 위한 모형 실험 연구, 한국지반 환경공학회 논문집, 제9권, 제 3호, pp. 83-89.
- 2. 김진환, 이용수, 박근보 (2010). 토석류 충격력 특성 평가를 위한 모형실험 연구, 한국지반공학회논문집, 제26권 11호, pp. 5-15.
- 3. 김영일 (2012), 수리 및 수치 실험을 통한 배수구조물 내 토석류 거동 분석, 강릉원주대학교 석사학위논 문
- 4. 김영일, 백중철 (2011a), 2011년 7월 우면산 토석류의 이동 특성, 2011년도 대한토목학회 정기학술대회,
- 5. 김영일, 백중철 (2011b), 횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구, 대 한토목학회논문집, 대한토목학회, 제 31권, 제 5B호, pp. 467-474.

- 6. 장범수, 노성열, 손종철, 박덕근, 유병옥 (2007). 집중호우에 따른 비탈면 재해분석을 통한 피해저감 방안 제안, 구조물진단학회지 제 11권, 제 4호, pp. 3~11.
- 7. 박병수 (2008). 강원도 산지재해 발생특성 및 방호대책, 강원발전연구원.
- 8. 유병옥, 장범수, 최승일, 최우경, 이종훈 (2006). 강원도 지역의 토석류 피해사례 및 대책공법 연구, 한 국철도학회, 제 9권, 제 6호, pp.1-10.
- 9. 채병곤, 조용찬, 송영성 (2008). 국내 토석류 재해 현황 및 피해저감 방안, 한국지반공학회 2008년도 학 술발표회 논문집, 한국지반환경공학회, pp. 407-410.
- Iverson, R. M. (1997). The Physics of Debris Flows, Review of Geophysics, V.35, No.3, pp.245-296
- Iverson, R. M. (2003). The debris flow rheology myth. In: D. Rickenmann and C.L. Chen (Eds), debris-flow hazard mitigation: Mechanics, Prediction, and Assessment (Vol. 1, pp. 303-314), Millpress, Rotterdam.
- Jakob, M. (2005). A size classification for debris flows, Engineering Geology, Vol. 79, pp. 151–161.
- 13. Marchi, L., Arattano, M. and Deganutti, A. M. (2002). Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps), Geomorphology, Vol. 46, pp. 1–17.
- Marchi, L. and D'Agostino, V. (2004). Estimation of debris-flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms, V. 29, pp. 207–220.
- Pierson, T. C. and Costa, J. E. (1987). A rheologic classification of subaerial sedimentwater flows, in Debris Flows/Avalanches: Process, Recognition, and Mitigation, Rev. Eng. Geol., Vol. 7, edited by J. E. Costa and G.F. Wieczorek, pp. 1-2, Geol. Soc. of Am., Boulder, Colo.
- Takahashi, T. (1980), Study on the deposition of debris flow (2) Process of formation of debris fan: annuals, DPRI, 23B-2: pp. 443-456.
- 17. Takahashi, T. (2007). Debris flow: mechanics, prediction and countermeasures, Taylor & Francis Group, London, UK.