DOI QR코드

DOI QR Code

INFINITELY MANY REGULAR SUBNORMAL BINARY HERMITIAN LATTICES OVER IMAGINARY QUADRATIC FIELDS

  • Kim, Byeong-Moon (Department of Mathematic Gangneung-Wonju National University) ;
  • Kim, Ji-Young (Department of Mathematical Sciences Seoul National University) ;
  • Park, Poo-Sung (Department of Mathematics Education Kyungnam University)
  • 투고 : 2012.02.02
  • 심사 : 2012.04.11
  • 발행 : 2012.05.31

초록

Finiteness of regular normal binary Hermitian lattices are known in several articles. In this article, we point out that there are infinitely many imaginary quadratic fields that admit a regular subnormal binary Hermitian lattice.

키워드

참고문헌

  1. W. K. Chan, A. G. Earnest, M. I. Icaza, J. Y. Kim, Finiteness results for regular definite ternary quadratic forms over Q($\sqrt{5}$), Int. J. Number Theory, 3 (2007), 541-556. https://doi.org/10.1142/S1793042107001103
  2. W. K. Chan, A. Rokicki, Positive definite binary Hermitian forms with finitely many exceptions, J. Number Theory 124 (2007), 167-180. https://doi.org/10.1016/j.jnt.2006.07.016
  3. W. K. Chan, A. G. Earnest, B.-K. Oh, Regularity properties of positive definite integral quadratic forms, Contemp. Math., 344 (2004), 59-71. https://doi.org/10.1090/conm/344/06208
  4. J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemp. Math. 272 (2000), 23-26. https://doi.org/10.1090/conm/272/04394
  5. L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math. 28 (1927), 331-341.
  6. A. G. Earnest, A. Khosravani, Universal binary Hermitian forms, Math. Comp. 66 (1997), 1161-1168. https://doi.org/10.1090/S0025-5718-97-00860-0
  7. A. G. Earnest, A. Khosravani, Representation of integers by positive definite binary Hermitian lattices over imaginary quadratic fields, J. Number Theory 62 (1997), 368-374. https://doi.org/10.1006/jnth.1997.2053
  8. H. Iwabuchi, Universal binary positive definite Hermitian lattices, Rocky Mountain J. Math. 30 (2000), 951-959. https://doi.org/10.1216/rmjm/1021477254
  9. B.M. Kim, J.Y. Kim, P.-S. Park, Complete classifiaction of binary normal regular Hermitian lattices over imaginary quadratic fields, J. Math. Soc. Japan 63 (2011), 1001-1025. https://doi.org/10.2969/jmsj/06331001
  10. B.M. Kim, J.Y. Kim, P.-S.Park, Even universal binary Hermitian lattices over imaginary quadratic fields. Forum Math. 23 (2011), 1189-1201.
  11. B. M. Kim, P.-S. Park, Hermitian lattices without a basis of minimal vectors, Proc. Amer. Math. Soc. 136 (2008), 3041-3044.
  12. J.-H. Kim, P.-S. Park, A few uncaught universal Hermitian forms, Proc. of Amer. Math. Soc. 135 (2007), 47-49.
  13. O. T. O'Meara, Introduction to Quadratic Forms, Spinger-Verlag, New York, 1973.
  14. G. L. Watson, Some problems in the theory of numbers, Ph.D. thesis, University of London, 1953.
  15. G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika 1 (1954), 104-110. https://doi.org/10.1112/S0025579300000589

피인용 문헌

  1. Strictly regular ternary Hermitian forms vol.168, pp.None, 2016, https://doi.org/10.1016/j.jnt.2016.04.012