A HYBRID PROJECTION METHOD FOR RELAXED COCOERCIVE MAPPINGS AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

Ying Liu

Abstract

The purpose of this paper is to introduce a hybrid projection method for finding a common element of the set of solutions of a generalized equilibrium problem, the set of solutions of a variational inclusion problem and the set of common fixed points of a finite family of strict pseudo-contractions in Hilbert spaces.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let $B: H \rightarrow H$ be a single-valued mapping and $M: H \rightarrow 2^{H}$ be a multivalued mapping. Then, we consider the following variational inclusion problem which is to find $u \in H$ such that

$$
\begin{equation*}
0 \in B(u)+M(u) . \tag{1.1}
\end{equation*}
$$

The set of solutions of the variational inclusion(1.1) is denoted by $V I(H, B, M)$. Special Cases.
(1) When M is a maximal monotone mapping and B is a strongly monotone and Lipschitz continuous mapping, problem (1.1) has been studied by Huang [14].
(2) If $M=\partial \phi$, where $\partial \phi$ denotes the subdifferential of a proper, convex and lower semi-continuous function $\phi: H \rightarrow \mathbb{R} \bigcup\{+\infty\}$, then problem (1.1) reduces to the following problem: find $u \in H$ such that

$$
\begin{equation*}
\langle B(u), v-u\rangle+\phi(v)-\phi(u) \geq 0, \quad \forall v \in H, \tag{1.2}
\end{equation*}
$$

which is called a nonlinear variational inequality and has been studied by many authors; see, for example [4-5].

[^0](3) If $M=\partial \delta_{C}$, where δ_{C} is the indicator function of C, then problem (1.1) reduces to the following problem: find $u \in C$ such that
\[

$$
\begin{equation*}
\langle B(u), v-u\rangle \geq 0, \quad \forall v \in C \tag{1.3}
\end{equation*}
$$

\]

which is the classical variational inequality; see, e.g., $[13,15]$.
Recall the following definitions:
(1) A mapping A of C into H is called monotone if

$$
\langle A u-A v, u-v\rangle \geq 0, \quad \forall u, v \in C
$$

(2) A is called ν-strong monotone, if for each $x, y \in C$, we have

$$
\langle A x-A y, x-y\rangle \geq \nu\|x-y\|^{2} \text { for a constant } \nu>0
$$

(3) A is said to be μ-cocoercive, if for each $x, y \in C$, we have

$$
\langle A x-A y, x-y\rangle \geq \mu\|A x-A y\|^{2} \quad \text { for a constant } \quad \mu>0 .
$$

Clearly, every μ-cocoercive mapping is $\frac{1}{\mu}$-Lipschitz continuous.
(4) A is said to be relaxed μ-cocoercive, if there exists a constant $\mu>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\mu)\|A x-A y\|^{2} \forall x, y \in C
$$

(5) A is said to be relaxed (μ, ν)-cocoercive, if there exist two constants $\mu, \nu>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\mu)\|A x-A y\|^{2}+\nu\|x-y\|^{2} \quad \forall x, y \in C
$$

(6) A mapping $T: C \rightarrow C$ is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$.
(7) A set-valued mapping $M: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in$ $H, u \in M x, v \in M y$ imply $\langle x-y, u-v\rangle \geq 0$. A monotone mapping $M: H \rightarrow 2^{H}$ is maximal if the graph $G(M)$ of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for $(x, u) \in$ $H \times H,\langle x-y, u-v\rangle \geq 0$ for every $(y, v) \in G(M)$ implies $u \in M x$.
(8) A mapping $S: C \rightarrow C$ is said to be k-strictly pseudo-contractive if there exists a constant $k \in[0,1)$ such that

$$
\|S x-S y\|^{2} \leq\|x-y\|^{2}+k\|(I-S) x-(I-S) y\|^{2}, \quad \forall x, y \in C
$$

Note that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings. That is, S is nonexpansive if and only if S is 0 -strictly pseudo-contractive.

Recently, many authors considered the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality (1.3) for an α-cocoercive mapping. They obtained some weak and strong convergence theorems(see, for example [7, 8, 15, 19, 27, 30]).

Let f be a bifunction of $C \times C \rightarrow \mathbb{R}$, where \mathbb{R} is the set of real numbers. The equilibrium problem for the bifunction f is to find $z \in C$ such that

$$
\begin{equation*}
f(z, y) \geq 0, \quad \forall y \in C \tag{1.4}
\end{equation*}
$$

The set of solutions of (1.4) is denoted by $E P(f)$. Numerous problem in physics, optimization and economics reduce to find a solution of (1.4). Some methods have been proposed to solve the equilibrium(1.4)(see, for instance [9, $10,12,21,28,29])$.

For solving the equilibrium problem for a bifunction $f: C \times C \rightarrow \mathbb{R}$, we may assume that f satisfies the following conditions:
(A1) $f(x, x)=0$, for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C$,

$$
\lim _{t \rightarrow 0} f(t z+(1-t) x, y) \leq f(x, y)
$$

(A4) for each $x \in C, y \mapsto f(x, y)$ is convex and lower semi-continuous.
In 2007, S. Takashi and W. Takahashi [26] introduced a viscosity approximation method for finding a common element of the set of solutions to the equilibrium problem (1.4) and the set of fixed points of a nonexpansive mapping in Hilbert space.

On the other hand, Y. Liu [16] and L.-C. Ceng, et al. [6] introduced different iterative methods for finding a common element of the set of solutions to the equilibrium problem (1.4) and the set of fixed points of a k-strictly pseudocontractive mapping in Hilbert space.

Recently, Takahashi and Takahashi [25] considered the following generalized equilibrium problem:

$$
\begin{equation*}
\text { Find } z \in C \text {, such that } f(z, y)+\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{1.5}
\end{equation*}
$$

The set of solutions of (1.5) is denoted by $E P$. More precise, they proved the following result:

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let A be an α-cocoercive mapping of C into H and let S be a nonexpansive mapping of C into itself such that $F(S) \bigcap E P \neq \emptyset$. Let $u \in C$ and $x_{1} \in C$ and let $\left\{z_{n}\right\} \subset C$ and $\left\{x_{n}\right\} \subset C$ be sequences generated by

$$
\left\{\begin{array}{l}
f\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{\lambda_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S\left[\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n}\right], \quad \forall n \in N,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset[0,1],\left\{\beta_{n}\right\} \subset[0,1]$ and $\left\{\lambda_{n}\right\} \subset[0,2 \alpha]$ satisfy

$$
\begin{gathered}
0<c \leq \beta_{n} \leq d<1, \quad 0<a \leq \lambda_{n} \leq b<2 \alpha \\
\lim _{n \rightarrow \infty} \alpha_{n}=0 \quad \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
\end{gathered}
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $z=P_{F(S) \cap E P} u$, where $P_{F(S) \cap E P}$ is the metric projection from C onto $F(S) \bigcap E P$.

It's easy to see that in the case of $A \equiv 0$, this problem (1.5) reduces to the equilibrium problem (1.4).

In this paper, we consider the following generalized equilibrium problem:

$$
\begin{equation*}
\text { Find } z \in H, \text { such that } f(z, y)+\langle A z, y-z\rangle \geq 0, \quad \forall y \in H \tag{1.6}
\end{equation*}
$$

Denote the set of solutions of (1.6) by Ω.
On the other hand, G. L. Acedo and H. K. Xu [1] introduced iterative methods for finding a common fixed point of a finite family of k-strict pseudocontractions in Hilbert spaces. More precisely, they proposed the following iterative algorithm:

$$
\left\{\begin{array}{l}
x_{1}=\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{0} x_{0}, \\
x_{2}=\alpha_{1} x_{1}+\left(1-\alpha_{1}\right) T_{1} x_{1}, \\
\quad \ldots \\
x_{N}=\alpha_{N-1} x_{N-1}+\left(1-\alpha_{N-1}\right) T_{N-1} x_{N-1}, \\
x_{N+1}=\alpha_{N} x_{N}+\left(1-\alpha_{N}\right) T_{0} x_{N}, \\
\quad \ldots
\end{array}\right.
$$

In a more compact form, x_{n+1} can be written as $x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{[n]} x_{n}$, where $T_{[n]}=T_{i}$, with $i=n(\bmod N), 0 \leq i \leq N-1, N \geq 1$ is a positive integer and $\left\{T_{i}\right\}_{i=0}^{N-1}$ are N strict pseudo-contractions defined on C. Then, they showed that the above algorithm is weakly convergent if the sequence $\left\{\alpha_{n}\right\}$ is appropriately chosen.

In this paper, we introduce a hybrid projection method for the variational inclusion problem (1.1), the generalized equilibrium problem (1.6) and a fixed point problem for a finite family of k-strict pseudo-contractions. Then, we obtain a strong convergence theorem. In addition, about the hybrid projection method, we can also see [22, 23].

2. Preliminaries

Throughout this paper, we always let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and let C be a closed convex subset of H. We write $x_{n} \rightarrow x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges strongly to x. We denote by Z^{+}and \mathbb{R} the sets of positive integers and real numbers, respectively. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$ such that

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|, \quad \forall y \in C
$$

Such a P_{C} is called the metric projection of H onto C. It is known that P_{C} is nonexpansive. Furthermore, for $x \in H$ and $u \in C$,

$$
u=P_{C} x \Leftrightarrow\langle x-u, u-y\rangle \geq 0, \quad \forall y \in C
$$

It is also known that $\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2}$, for all $x \in H$ and $y \in C$.

The following definitions and lemmas are useful for our paper.
Definition 1. ([2, 20]) If M is a maximal monotone mapping on H, then the resolvent operator associated with M is defined by

$$
J_{M, \lambda}(u)=(I+\lambda M)^{-1} u, \quad \forall u \in H
$$

where $\lambda>0$ is a constant and I is the identity operator. Furthermore, $J_{M, \lambda}$ is single-valued.

Definition 2. ([11]) A single-valued operator $A: H \rightarrow H$ is said to be hemicontinuous if for any fixed $x, y, z \in H$, the function $t \rightarrow\langle A(x+t y), z\rangle$ is continuous at 0^{+}. It is well known that a continuous mapping must be hemicontinuous.

Definition 3. ([11]) A set-valued mapping $A: X \rightarrow 2^{X^{*}}$ is said to be bounded if $A(B)$ is bounded for every bounded subset B of X.

Lemma 2.1. ([2]) The resolvent operator $J_{M, \lambda}$ is single-valued and nonexpansive, that is,

$$
\left\|J_{M, \lambda}(u)-J_{M, \lambda}(v)\right\| \leq\|u-v\|, \quad \forall u, v \in H
$$

Lemma 2.2. ([17]) The resolvent operator $J_{M, \lambda}$ is firmly nonexpansive, that is

$$
\left\langle J_{M, \lambda} u-J_{M, \lambda} v, u-v\right\rangle \geq\left\|J_{M, \lambda} u-J_{M, \lambda} v\right\|^{2}, \quad \forall u, v \in H .
$$

Lemma 2.3. ([20]) If $T: X \rightarrow 2^{X^{*}}$ is a maximal monotone mapping and $P: X \rightarrow X^{*}$ is a hemi-continuous bounded monotone operator with $D(P)=X$, then the sum $S=T+P$ is a maximal monotone mapping.

Lemma 2.4. ([18]) If $S: C \rightarrow C$ is a k-strict pseudo-contraction, then the mapping $I-S$ is demiclosed (at 0). That is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup \tilde{x}$ and $(I-S) x_{n} \rightarrow 0$, then $(I-S) \tilde{x}=0$.

Lemma 2.5. ([18]) If $S: C \rightarrow C$ is a k-strict pseudo-contraction, then the fixed point set $F(S)$ of S is closed and convex.

Lemma 2.6. ([24]) There holds the identity in a Hilbert space H :

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.

Lemma 2.7. The function $u \in H$ is a solution of variational inclusion (1.1) if and only if $u \in H$ satisfies the relation

$$
u=J_{M, \lambda}[u-\lambda B u],
$$

where $\lambda>0$ is a constant, M is a maximal monotone mapping and $J_{M, \lambda}=$ $(I+\lambda M)^{-1}$ is the resolvent operator.

Proof. Using Definition 2.1, we can obtain the desired result.

Lemma 2.8. ([10, 3]) Let f be a bifunction from $C \times C$ into \mathbb{R} satisfying (A1), (A2), (A3) and (A4). Then, for any $r>0$ and $x \in H$, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

Further, if $T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C\right\}$, then the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, i.e.,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle, \quad \forall x, y \in H
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

Lemma 2.9. Let $A: H \rightarrow H$ be a relaxed $\left(\mu_{1}, \nu_{1}\right)$-cocoercive and s_{1}-Lipschitz continuous mapping, $r>0$ be a positive number satisfying $0 \leq r \leq \frac{2\left(\nu_{1}-\mu_{1} s_{1}^{2}\right)}{s_{1}^{2}}$, then $I-r A$ is nonexpansive.

Proof. For all $x, y \in H$, we have

$$
\begin{aligned}
\|(I-r A) x-(I-r A) y\|^{2}= & \|(x-y)-r(A x-A y)\|^{2} \\
= & \|x-y\|^{2}-2 r\langle x-y, A x-A y\rangle+r^{2}\|A x-A y\|^{2} \\
\leq & \|x-y\|^{2}-2 r\left(\left(-\mu_{1}\right)\|A x-A y\|^{2}+\nu_{1}\|x-y\|^{2}\right) \\
& +r^{2}\|A x-A y\|^{2} \\
\leq & \|x-y\|^{2}+2 r \mu_{1} s_{1}^{2}\|x-y\|^{2}-2 r \nu_{1}\|x-y\|^{2} \\
& +s_{1}^{2} r^{2}\|x-y\|^{2} \\
= & \left(1+2 r \mu_{1} s_{1}^{2}-2 r \nu_{1}+s_{1}^{2} r^{2}\right)\|x-y\|^{2} \\
\leq & \|x-y\|^{2}
\end{aligned}
$$

which implies the mapping $I-r A$ is nonexpansive.

3. Main results

For any $x_{0} \in H$, we define the iteration process $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{array}{l}
x_{0} \in H \quad \text { chosen arbitrarily } \tag{*}\\
y_{n}=J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
f\left(u_{n}, y\right)+\left\langle A y_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-y_{n}\right\rangle \geq 0, \quad \forall y \in H \\
z_{n}=\gamma_{n} u_{n}+\left(1-\gamma_{n}\right) T_{[n]} u_{n} \\
v_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) z_{n} \\
C_{0}=H \\
C_{n+1}=\left\{z \in C_{n}:\left\|v_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x_{0}
\end{array}\right.
$$

In this section, we will employ the above iterative process $\left\{x_{n}\right\}$ for finding a common element of the set of solutions of the generalized equilibrium problem (1.6), the set of solutions of the variational inclusion problem (1.1) and the set of common fixed points of a finite family of strict pseudo-contractions in Hilbert spaces. By the construction of C_{n} and $\left\{x_{n}\right\}$, we can prove $x_{n} \rightarrow w \in H$. Using the nonexpansivity of $I-r_{n} A$ and $I-\lambda_{n} B$, the firmly nonexpansivity of $J_{M, \lambda_{n}}$ and $T_{r_{n}}$, we can obtain $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|$ $=\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0$. It follows from lemma 2.4, conditions (A1)-(A4), lemma 2.3 and properties of a maximal monotone mapping that $w \in F$, where $F:=\bigcap_{i=0}^{N-1} F\left(T_{i}\right) \bigcap \Omega \bigcap V I(H, B, M) \neq \emptyset$. Finally, by the continuity of $\|\cdot\|$ and the uniqueness of $P_{F} x_{0}$, we can obtain $w=P_{F} x_{0}$.

Theorem 3.1. Let H be a real Hilbert space. Let $A: H \rightarrow H$ be relaxed $\left(\mu_{1}, \nu_{1}\right)$-cocoercive and s_{1}-Lipschitz continuous. Let $B: H \rightarrow H$ be relaxed $\left(\mu_{2}, \nu_{2}\right)$-cocoercive and s_{2}-Lipschitz continuous. Let $f: H \times H \rightarrow \mathbb{R}$ be a bifunction satisfying (A1)-(A4). Let $M: H \rightarrow 2^{H}$ be a maximal monotone mapping. Let $N \geq 1$ be an integer. Let, for each $0 \leq i \leq N-1, T_{i}: H \rightarrow H$ be a k_{i}-strict pseudo-contraction for some $0 \leq k_{i}<1$. Let $k=\max \left\{k_{i}: 0 \leq i \leq\right.$ $N-1\}$. Assume that $F:=\bigcap_{i=0}^{N-1} F\left(T_{i}\right) \bigcap \Omega \bigcap V I(H, B, M) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by $(*)$ and $\left\{\alpha_{n}\right\},\left\{r_{n}\right\},\left\{\lambda_{n}\right\},\left\{\gamma_{n}\right\}$ satisfy the following conditions:

$$
\begin{aligned}
& \text { (B1) } 0 \leq \alpha_{n} \leq a<1 \\
& \text { (B2) } 0 \leq b \leq r_{n} \leq c \leq \frac{2\left(\nu_{1}-\mu_{1} s_{1}^{2}\right)}{s_{1}^{2}} \\
& \text { (B3) } 0 \leq d \leq \lambda_{n} \leq e \leq \frac{2\left(\nu_{2}-\mu_{2} s_{2}^{2}\right)}{s_{2}^{2}} \\
& \text { (B4) } 0 \leq k \leq \gamma_{n} \leq \gamma<1 \text {, for some } a, b, c, d, e, \gamma \in \mathbb{R} \text {. }
\end{aligned}
$$

Then, the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F} x_{0}$, where P_{F} is the metric projection of H onto F.

Proof. Firstly, we show that F is closed, convex. By lemma 2.5, we have $\bigcap_{i=0}^{N-1} F\left(T_{i}\right)$ is closed and convex. It follows from Lemma 2.7 that $V I(H, B, M)=$ $\stackrel{i=0}{F}\left(J_{M, \lambda}(I-\lambda B)\right)$ (the set of fixed points of $J_{M, \lambda}(I-\lambda B)$), where $0 \leq \lambda \leq$ $\frac{2\left(\nu_{2}-\mu_{2} s_{2}^{2}\right)}{s_{2}^{2}}$. By Lemma 2.1 and Lemma 2.9, we have $J_{M, \lambda}(I-\lambda B)$ is a nonexpansive mapping of H into itself. Thus, $V I(H, B, M)$ is closed and convex. It follows from Lemma 2.8 that $\Omega=F\left(T_{r}(I-r A)\right.$) (the set of fixed points of $T_{r}(I-r A)$), where $0 \leq r \leq \frac{2\left(\nu_{1}-\mu_{1} s_{1}^{2}\right)}{s_{1}^{2}}$. By Lemmas 2.8 and 2.9 , we have $T_{r}(I-r A)$ is a nonexpansive mapping of H into itself. Thus, Ω is closed and convex. Therefore, F is closed, convex.

The rest of the proof will be split into six steps.
Step 1. Show that $P_{C_{n+1}} x_{0}$ is well defined.
Now, we show that C_{n} is closed and convex for all $n \geq 0$. It's obvious that $C_{0}=H$ is closed and convex. Suppose that C_{k} is closed and convex for some $k \in Z^{+}$. For $z \in C_{k}$, we obtain that $\left\|v_{k}-z\right\| \leq\left\|x_{k}-z\right\|$ is equivalent to $2\left\langle z, x_{k}-v_{k}\right\rangle \leq\left\|x_{k}\right\|^{2}-\left\|v_{k}\right\|^{2}$. It's easy to see that C_{k+1} is closed and convex. Then, for all $n \geq 0, C_{n}$ is closed and convex. This shows that $P_{C_{n+1}} x_{0}$ is well defined.

Step 2. Show that $F \subset C_{n}$ and $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{z_{n}\right\},\left\{v_{n}\right\}$ are bounded. Note that u_{n} can be rewritten as $u_{n}=T_{r_{n}}\left(y_{n}-r_{n} A y_{n}\right)$ for each $n \geq 0$. By Lemma 2.9 and conditions (B2) and (B3), we know that $I-r_{n} A$ and $I-\lambda_{n} B$ are nonexpansive. So, for any $p \in F$, we have

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} B x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} B p\right)\right\| \\
& \leq\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)\right\| \leq\left\|x_{n}-p\right\|, \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
\left\|u_{n}-p\right\| & =\left\|T_{r_{n}}\left(y_{n}-r_{n} A y_{n}\right)-T_{r_{n}}\left(p-r_{n} A p\right)\right\| \\
& \leq\left\|\left(y_{n}-r_{n} A y_{n}\right)-\left(p-r_{n} A p\right)\right\| \leq\left\|y_{n}-p\right\| . \tag{3.2}
\end{align*}
$$

On the other hand, from Lemma 2.6 and (B4), we have

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2}= & \gamma_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left\|T_{[n]} u_{n}-p\right\|^{2} \\
& -\gamma_{n}\left(1-\gamma_{n}\right)\left\|u_{n}-T_{[n]} u_{n}\right\|^{2} \\
\leq & \gamma_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left(\left\|u_{n}-p\right\|^{2}+k\left\|u_{n}-T_{[n]} u_{n}\right\|^{2}\right) \\
& -\gamma_{n}\left(1-\gamma_{n}\right)\left\|u_{n}-T_{[n]} u_{n}\right\|^{2} \tag{3.3}\\
= & \left\|u_{n}-p\right\|^{2}-\left(1-\gamma_{n}\right)\left(\gamma_{n}-k\right)\left\|u_{n}-T_{[n]} u_{n}\right\|^{2} \\
\leq & \left\|u_{n}-p\right\|^{2}
\end{align*}
$$

Next, we show that $F \subset C_{n}$ for each $n \geq 0 . F \subset C_{0}=H$ is obvious. Suppose $F \subset C_{m}$ for some $m \geq 1$. Then, for any $p \in F \subset C_{m}$, from (3.1)-(3.3), we have

$$
\begin{aligned}
\left\|v_{m}-p\right\| & \leq \alpha_{m}\left\|x_{m}-p\right\|+\left(1-\alpha_{m}\right)\left\|z_{m}-p\right\| \\
& \leq \alpha_{m}\left\|x_{m}-p\right\|+\left(1-\alpha_{m}\right)\left\|u_{m}-p\right\| \\
& \leq \alpha_{m}\left\|x_{m}-p\right\|+\left(1-\alpha_{m}\right)\left\|x_{m}-p\right\| \\
& =\left\|x_{m}-p\right\| .
\end{aligned}
$$

It follows that $p \in C_{m+1}$. This implies $F \subset C_{n}$ for each $n \geq 0$. Since $x_{n}=$ $P_{C_{n}} x_{0}$ and $F \subset C_{n}$, we have $\left\|x_{n}-x_{0}\right\| \leq\left\|p-x_{0}\right\|$ for all $p \in F$. In particular, $\left\{x_{n}\right\}$ is bounded and

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|q-x_{0}\right\|, \tag{3.4}
\end{equation*}
$$

where $q=P_{F} x_{0}$. Hence, $\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{z_{n}\right\},\left\{v_{n}\right\}$ are also bounded.
Step 3. Show that $x_{n} \rightarrow w \in H$ as $n \rightarrow \infty$.
Noticing that $x_{n}=P_{C_{n}} x_{0}$ and $x_{n+1}=P_{C_{n+1}} x_{0} \in C_{n+1} \subset C_{n}$, we have

$$
\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{0}\right\|, \quad \text { for all } n \geq 0
$$

Therefore, $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ is nondecreasing. It follows that the limit of $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ exists. By the construction of C_{n}, we have that $C_{m} \subset C_{n}$ and $x_{m}=P_{C_{m}} x_{0} \in$ C_{n} for any positive integer $m \geq n$. It follows that

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|^{2}=\left\|x_{m}-P_{C_{n}} x_{0}\right\|^{2} \leq\left\|x_{m}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2} . \tag{3.5}
\end{equation*}
$$

Letting $m, n \rightarrow \infty$ in (3.5), we have $x_{m}-x_{n} \rightarrow 0$, as $m, n \rightarrow \infty$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. we can assume that $x_{n} \rightarrow w$, as $n \rightarrow \infty$.

Step 4. Show that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0
$$

Noticing that $x_{n+1} \in C_{n+1}$, we obtain $\left\|v_{n}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$. It follows that

$$
\begin{equation*}
\left\|v_{n}-x_{n}\right\| \leq\left\|v_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

On the other hand, from $v_{n}-x_{n}=\left(1-\alpha_{n}\right)\left(z_{n}-x_{n}\right)$, we have

$$
\begin{equation*}
\left\|z_{n}-x_{n}\right\|=\frac{1}{1-\alpha_{n}}\left\|v_{n}-x_{n}\right\| \leq \frac{1}{1-a}\left\|v_{n}-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

For any $p \in F$, from (3.3), we have

$$
\begin{align*}
\left\|v_{n}-p\right\|^{2}= & \left\|\alpha_{n}\left(x_{n}-p\right)+\left(1-\alpha_{n}\right)\left(z_{n}-p\right)\right\|^{2} \\
= & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-z_{n}\right\|^{2} \tag{3.8}\\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-p\right\|^{2} .
\end{align*}
$$

Observing that

$$
\begin{align*}
\left\|u_{n}-p\right\|^{2}= & \left\|T_{r_{n}}\left(y_{n}-r_{n} A y_{n}\right)-T_{r_{n}}\left(p-r_{n} A p\right)\right\|^{2} \\
\leq & \left\|\left(y_{n}-r_{n} A y_{n}\right)-\left(p-r_{n} A p\right)\right\|^{2} \\
= & \left\|\left(y_{n}-p\right)-r_{n}\left(A y_{n}-A p\right)\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}+r_{n}^{2}\left\|A y_{n}-A p\right\|^{2}-2 r_{n}\left\langle y_{n}-p, A y_{n}-A p\right\rangle \\
\leq & \left\|y_{n}-p\right\|^{2}+r_{n}^{2}\left\|A y_{n}-A p\right\|^{2}+2 r_{n} \mu_{1}\left\|A y_{n}-A p\right\|^{2} \\
& -2 r_{n} \nu_{1}\left\|y_{n}-p\right\|^{2} \tag{3.9}\\
\leq & \left\|y_{n}-p\right\|^{2}+r_{n}^{2}\left\|A y_{n}-A p\right\|^{2}+2 r_{n} \mu_{1}\left\|A y_{n}-A p\right\|^{2} \\
& +\frac{-2 r_{n} \nu_{1}}{s_{1}^{2}}\left\|A y_{n}-A p\right\|^{2} \\
= & \left\|y_{n}-p\right\|^{2}+\left(2 r_{n} \mu_{1}+r_{n}^{2}-\frac{2 r_{n} \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2} .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\left(2 \lambda_{n} \mu_{2}+\lambda_{n}^{2}-\frac{2 \lambda_{n} \nu_{2}}{s_{2}^{2}}\right)\left\|B x_{n}-B p\right\|^{2} \tag{3.10}
\end{equation*}
$$

It follows from (3.8), (3.3), (3.9) and (3.10) that

$$
\begin{align*}
\left\|v_{n}-p\right\|^{2} \leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left(\left\|y_{n}-p\right\|^{2}\right. \\
& \left.+\left(2 r_{n} \mu_{1}+r_{n}^{2}-\frac{2 r_{n} \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left(\left\|x_{n}-p\right\|^{2}\right. \\
& +\left(2 \lambda_{n} \mu_{2}+\lambda_{n}^{2}-\frac{2 \lambda_{n} \nu_{2}}{s_{2}^{2}}\right)\left\|B x_{n}-B p\right\|^{2} \tag{3.11}\\
& \left.+\left(2 r_{n} \mu_{1}+r_{n}^{2}-\frac{2 r_{n} \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2}\right) \\
= & \left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left(2 \lambda_{n} \mu_{2}+\lambda_{n}^{2}-\frac{2 \lambda_{n} \nu_{2}}{s_{2}^{2}}\right)\left\|B x_{n}-B p\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(2 r_{n} \mu_{1}+r_{n}^{2}-\frac{2 r_{n} \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2} .
\end{align*}
$$

So, we have

$$
\begin{align*}
& -(1-a)\left(2 e \mu_{2}+e^{2}-\frac{2 d \nu_{2}}{s_{2}^{2}}\right)\left\|B x_{n}-B p\right\|^{2} \\
& \leq-\left(1-\alpha_{n}\right)\left(2 \lambda_{n} \mu_{2}+\lambda_{n}^{2}-\frac{2 \lambda_{n} \nu_{2}}{s_{2}^{2}}\right)\left\|B x_{n}-B p\right\|^{2} \tag{3.12}\\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|v_{n}-p\right\|^{2}
\end{align*}
$$

RELAXED COCOERCIVE AND STRICTLY PSEUDO-CONTRACTIVE MAPPINGS 315

 and$$
\begin{align*}
& -(1-a)\left(2 c \mu_{1}+c^{2}-\frac{2 b \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2} \\
& \leq-\left(1-\alpha_{n}\right)\left(2 r_{n} \mu_{1}+r_{n}^{2}-\frac{2 r_{n} \nu_{1}}{s_{1}^{2}}\right)\left\|A y_{n}-A p\right\|^{2} \tag{3.13}\\
& \leq\left\|x_{n}-p\right\|^{2}-\left\|v_{n}-p\right\| .
\end{align*}
$$

From (3.6), (3.12) and (3.13), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|B x_{n}-B p\right\|=\lim _{n \rightarrow \infty}\left\|A y_{n}-A p\right\|=0 \tag{3.14}
\end{equation*}
$$

Using Lemma 2.8, we have

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2}= & \left\|T_{r_{n}}\left(y_{n}-r_{n} A y_{n}\right)-T_{r_{n}}\left(p-r_{n} A p\right)\right\|^{2} \\
\leq & \left\langle\left(y_{n}-r_{n} A y_{n}\right)-\left(p-r_{n} A p\right), u_{n}-p\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(I-r_{n} A\right) y_{n}-\left(I-r_{n} A\right) p\right\|^{2}+\left\|u_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(I-r_{n} A\right) y_{n}-\left(I-r_{n} A\right) p-\left(u_{n}-p\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|\left(y_{n}-u_{n}\right)-r_{n}\left(A y_{n}-A p\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|u_{n}-p\right\|^{2}-\left\|y_{n}-u_{n}\right\|^{2}\right. \\
& \left.+2 r_{n}\left\langle y_{n}-u_{n}, A y_{n}-A p\right\rangle-r_{n}^{2}\left\|A y_{n}-A p\right\|^{2}\right\},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|u_{n}-p\right\|^{2} \leq\left\|y_{n}-p\right\|^{2}-\left\|y_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle y_{n}-u_{n}, A y_{n}-A p\right\rangle . \tag{3.15}
\end{equation*}
$$

Using Lemma 2.2, we also have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2}= & \left\|J_{M, \lambda_{n}}\left(x_{n}-\lambda_{n} B x_{n}\right)-J_{M, \lambda_{n}}\left(p-\lambda_{n} B p\right)\right\|^{2} \\
\leq & \left\langle\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right), y_{n}-p\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)\right\|^{2}+\left\|y_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-\lambda_{n} B x_{n}\right)-\left(p-\lambda_{n} B p\right)-\left(y_{n}-p\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|\left(x_{n}-y_{n}\right)-\lambda_{n}\left(B x_{n}-B p\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}-\lambda_{n}^{2}\left\|B x_{n}-B p\right\|^{2}\right. \\
& \left.+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle\right\},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle . \tag{3.16}
\end{equation*}
$$

Substitute (3.15) and (3.16) into (3.8) yields that

$$
\begin{aligned}
\left\|v_{n}-p\right\|^{2} \leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|y_{n}-p\right\|^{2}-\left\|y_{n}-u_{n}\right\|^{2}\right. \\
& \left.+2 r_{n}\left\langle y_{n}-u_{n}, A y_{n}-A p\right\rangle\right\} \\
\leq & \alpha_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right. \\
& \left.+2 \lambda_{n}\left\langle x_{n}-y_{n}, B x_{n}-B p\right\rangle\right\}-\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|^{2} \\
& +2 r_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|\left\|A y_{n}-A p\right\| \\
\leq & \left\|x_{n}-p\right\|^{2}-\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\|-\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|^{2} \\
& +2 r_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|\left\|A y_{n}-A p\right\| .
\end{aligned}
$$

This implies

$$
\begin{align*}
(1-a)\left\|x_{n}-y_{n}\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|v_{n}-p\right\|^{2} \tag{3.17}\\
& +2 \lambda_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\| \\
& +2 r_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|\left\|A y_{n}-A p\right\|,
\end{align*}
$$

and

$$
\begin{align*}
(1-a)\left\|y_{n}-u_{n}\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|v_{n}-p\right\|^{2} \tag{3.18}\\
& +2 \lambda_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|\left\|B x_{n}-B p\right\| \\
& +2 r_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-u_{n}\right\|\left\|A y_{n}-A p\right\| .
\end{align*}
$$

It follows from $(3.6),(3.14),(3.17)$ and (3.18) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

From $\left\|u_{n}-x_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.20}
\end{equation*}
$$

From $\left\|z_{n}-u_{n}\right\| \leq\left\|z_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|$, (3.7) and (3.20), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Step 5. Show that $w \in F$.
Observing that $\left\|T_{[n]} u_{n}-u_{n}\right\|=\frac{1}{1-\gamma_{n}}\left\|z_{n}-u_{n}\right\| \leq \frac{1}{1-\gamma}\left\|z_{n}-u_{n}\right\|$, from (3.21), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{[n]} u_{n}-u_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0$ and $x_{n} \rightarrow w, \quad n \rightarrow \infty$, we have

$$
\begin{equation*}
u_{n} \rightarrow w, \quad n \rightarrow \infty \tag{3.23}
\end{equation*}
$$

Take a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that $n_{i}(\bmod N)=l, \quad l \in\{0,1,2, . ., N-$ $1\}$, we deduce that

$$
\lim _{i \rightarrow \infty}\left\|T_{[l+j]} u_{n_{i}+j}-u_{n_{i}+j}\right\|=\lim _{i \rightarrow \infty}\left\|T_{\left[n_{i}+j\right]} u_{n_{i}+j}-u_{n_{i}+j}\right\|=0
$$

Then, by Lemma 2.4, we have $w \in T_{[l+j]}$ for all $j \in\{0,1,2, \cdots, N-1\}$. This ensures that $w \in \bigcap_{i=0}^{N-1} F\left(T_{i}\right)$. Now we show that $w \in \Omega$. Since $u_{n}=$ $T_{r_{n}}\left(y_{n}-r_{n} A y_{n}\right)$, for any $y \in H$, we have

$$
f\left(u_{n}, y\right)+\left\langle A y_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-y_{n}\right\rangle \geq 0
$$

From (A2), we have

$$
\begin{equation*}
\left\langle A y_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-y_{n}\right\rangle \geq f\left(y, u_{n}\right) \tag{3.24}
\end{equation*}
$$

Put $z_{t}=t y+(1-t) w$ for all $t \in(0,1]$ and $y \in H$. From (3.24), we have

$$
\begin{aligned}
\left\langle z_{t}-u_{n}, A z_{t}\right\rangle \geq & \left\langle z_{t}-u_{n}, A z_{t}\right\rangle-\left\langle z_{t}-u_{n}, A y_{n}\right\rangle \\
& -\left\langle z_{t}-u_{n}, \frac{u_{n}-y_{n}}{r_{n}}\right\rangle+f\left(z_{t}, u_{n}\right) \\
= & \left\langle z_{t}-u_{n}, A z_{t}-A u_{n}\right\rangle+\left\langle z_{t}-u_{n}, A u_{n}-A y_{n}\right\rangle \\
& -\left\langle z_{t}-u_{n}, \frac{u_{n}-y_{n}}{r_{n}}\right\rangle+f\left(z_{t}, u_{n}\right) .
\end{aligned}
$$

Since A is a relaxed $\left(\mu_{1}, \nu_{1}\right)$-cocoercive, s_{1}-Lipschitz continuous mapping, from condition (B2), for any $x, y \in H$, we have

$$
\begin{aligned}
\langle A x-A y, x-y\rangle & \geq\left(-\mu_{1}\right)\|A x-A y\|^{2}+\nu_{1}\|x-y\|^{2} \\
& \geq\left(-\mu_{1} s_{1}^{2}+\nu_{1}\right)\|x-y\|^{2} \geq 0,
\end{aligned}
$$

which yields that A is monotone, so is B. Further, from (3.19) and the continuity of A, we have $\left\|A u_{n}-A y_{n}\right\| \rightarrow 0$, as $n \rightarrow \infty$. So, from (A4), we have

$$
\begin{equation*}
\left\langle z_{t}-w, A z_{t}\right\rangle \geq f\left(z_{t}, w\right) \tag{3.25}
\end{equation*}
$$

From (A1), (A4) and (3.25), we also have

$$
\begin{aligned}
0 & =f\left(z_{t}, z_{t}\right) \\
& \leq t f\left(z_{t}, y\right)+(1-t) f\left(z_{t}, w\right) \\
& \leq t f\left(z_{t}, y\right)+(1-t)\left\langle z_{t}-w, A z_{t}\right\rangle \\
& =t f\left(z_{t}, y\right)+(1-t) t\left\langle y-w, A z_{t}\right\rangle,
\end{aligned}
$$

and hence,

$$
0 \leq f\left(z_{t}, y\right)+(1-t)\left\langle y-w, A z_{t}\right\rangle .
$$

Letting $t \rightarrow 0$, from (A3), we have, for each $y \in H$,

$$
0 \leq f(w, y)+\langle y-w, A w\rangle
$$

This implies $w \in \Omega$. Next, we show that $w \in V I(H, B, M)$. Since B is a s_{2}-Lipschitz continuous monotone mapping and $D(B)=H$, by Lemma 2.3, $M+B$ is a maximal monotone mapping. Let $\langle v, f\rangle \in G(M+B)$. Since $f-B v \in M v$ and $\frac{1}{\lambda_{n}}\left(x_{n}-y_{n}-\lambda_{n} B x_{n}\right) \in M y_{n}$, we have

$$
\left\langle v-y_{n},(f-B v)-\frac{1}{\lambda_{n}}\left(x_{n}-y_{n}-\lambda_{n} B x_{n}\right)\right\rangle \geq 0 .
$$

Therefore, we have

$$
\begin{aligned}
\left\langle v-y_{n}, f\right\rangle \geq & \left\langle v-y_{n}, B v+\frac{1}{\lambda_{n}}\left(x_{n}-y_{n}-\lambda_{n} B x_{n}\right)\right\rangle \\
= & \left\langle v-y_{n}, B v-B x_{n}\right\rangle+\left\langle v-y_{n}, \frac{1}{\lambda_{n}}\left(x_{n}-y_{n}\right)\right\rangle \\
= & \left\langle v-y_{n}, B v-B y_{n}\right\rangle+\left\langle v-y_{n}, B y_{n}-B x_{n}\right\rangle \\
& +\left\langle v-y_{n}, \frac{1}{\lambda_{n}}\left(x_{n}-y_{n}\right)\right\rangle \\
\geq & \left\langle v-y_{n}, B y_{n}-B x_{n}\right\rangle+\left\langle v-y_{n}, \frac{1}{\lambda_{n}}\left(x_{n}-y_{n}\right)\right\rangle .
\end{aligned}
$$

Let $n \rightarrow \infty$, we obtain $\langle v-w, f\rangle \geq 0$. Since $B+M$ is maximal monotone, we have $0 \in B w+M w$ and hence $w \in V I(H, B, M)$. Therefore, we obtain $w \in F$.

Step 6. Show that $w=P_{F} x_{0}$.
By taking limit in (3.4), we have

$$
\left\|w-x_{0}\right\| \leq\left\|q-x_{0}\right\|, \quad \text { where } q=P_{F} x_{0}
$$

Since $w \in F$, it follows from the uniqueness of $P_{F} x_{0}$ that $w=P_{F} x_{0}$.
Remark 1. In theorem 3.1, taking $M=\partial \phi$ or $M=\partial \delta_{C}, f \equiv 0, A \equiv 0, k=0$, then, we can obtain a common element of the set of solutions of problem (1.2) or (1.3) and the set of common fixed points of a finite family of nonexpansive mappings in Hilbert spaces.

References

[1] G. L. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258-2271.
[2] M. Aslam, Equivalence of variational inclusions with resolvent equations, Nonlinear Anal. 41 (2000), 963-970.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
[4] L. C. Ceng, Existence and algorithm of solutions for general multivalued mixed implicit quasi-variational inequalities, Appl. Math. Mech. 24 (2003), 1324-1333.
[5] L. C. Ceng, Perturbed proximal point algorithm for generalized nonlinear set-valued mixed quasi-variational inclusions, Acta. Math. Sin. 47 (2004), 11-18.
[6] L. C. Ceng, et al., An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math. 223 (2009), 967-974.
[7] L. C. Ceng and J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), 1293-1303.
[8] J. Chen, L. Zhang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2007), 1450-1461.
[9] Y. J. Cho, J. I. Kang and X. Qin, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009), 4203-4214.
[10] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
[11] Y. P. Fang and N. J. Huang, H-Accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl Math Lett. 17 (2004), 647-653.
[12] S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program. 78 (1997), 29-41.
[13] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inequalities, J. Math. Anal. Appl. 185 (1994), 706-712.
[14] N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Computers Math. Applic. 35 (1998), 9-14.
[15] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[16] Y. Liu, A general iterative method for equilibrium problems and strict pseudocontractions in Hilbert spaces, Nonlinear Anal. 71 (2009), 4852-4861.
[17] Y. Liu and Y. L. Chen, The Common Solution for the Question of Fixed Point and the Question of Variational Inclusion, J. Math. Res. Exposition 29 (2009), 477-484.
[18] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[19] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), 191-201.
[20] D. Pascali, Nonlinear mappings of monotone type, Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, 1978.
[21] X. Qin, Y. J. Cho and S. M. Kang, Convergence analysis on hybrid projection algorithms for equilibrium problems and variational inequality problems, Math. Model. Anal. 14 (2009), 335-351.
[22] X. Qin, Y. J. Cho, S. M. Kang and H. Y. Zhou, Convergence of a hybrid projection algorithm in Banach spaces, Acta Appl. Math. 108 (2009), 299-313.
[23] X. Qin, Y. J. Cho, S. M. Kang and M. J. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009), 19021911.
[24] X. Qin, M. Shang and S. M. Kang, Strong convergence theorems of Modified Mann iterative process for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009), 1257-1264.
[25] S. Takahashi and W. Takahashi, Strong convergence theorems for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025-1033.
[26] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[J], J. Math. Anal. Appl. 331 (2007), 506-515.
[27] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[28] Y. Yao, Y. J. Cho and Y. Liou, Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems, Europ. J. Operat. Research 212 (2011), 242-250.
[29] Y. Yao, Y. J. Cho and Y. Liou, Iterative algorithms for variational inclusions, mixed equilibrium problems and fixed point problems approach to optimization problems, Central European J. Math. 9 (2011), 640-656.
[30] Y. H. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), 1551-1558.

Ying LiU
College of Mathematics and Computer, Hebei University, No.180, Wusi eastRoad, Baoding, Hebei, China, 071002

E-mail address: ly_cyh2007@yahoo.com.cn

[^0]: Received January 4, 2012; Accepted April 11, 2012.
 2000 Mathematics Subject Classification. 47H09, 47H05, 47H06, 47J25, 47J05.
 Key words and phrases. Metric projection, relaxed cocoercive mapping, strict pseudocontraction, variational inclusion, generalized equilibrium problem.

 This work was financially supported by the Natural Science Youth Foundation of Hebei Education Commission (No. 2010110) and the Natural Science Youth Foundation of Hebei Province (No. A2011201053; A2010000191).

