STRONG CONVERGENCE THEOREMS FOR GENERALIZED VARIATIONAL INEQUALITIES AND RELATIVELY WEAK NONEXPANSIVE MAPPINGS IN BANACH SPACES

Ying Liu

Abstract

In this paper, we introduce an iterative sequence by using a hybrid generalized f-projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319-329], J. Fan, X. Liu and J. Li [Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997-4007], and many others.

1. Introduction

Let B be a Banach space, B^{*} be the dual space of $B .\langle\cdot, \cdot\rangle$ denotes the duality pairing of B^{*} and B. We denote by $J: B \rightarrow 2^{B^{*}}$ the normalized duality mapping from B to $2^{B^{*}}$, defined by

$$
J(x):=\left\{v \in B^{*}:\langle v, x\rangle=\|v\|^{2}=\|x\|^{2}\right\}, \quad \forall x \in B .
$$

The duality mapping J has the following properties:
(i) if B is smooth, then J is single-valued;
(ii) if B is strictly convex, then J is one-to-one;
(iii) if B is reflexive, then J is surjective;
(iv) if B is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of B.
Let B be a reflexive, strictly convex, smooth Banach space and J the duality mapping from B into B^{*}. Then J^{*} is also single-valued, one-to-one, surjective, and it is the duality mapping from B^{*} into B, i.e., $J^{*} J=I$. Let K be

[^0]a nonempty closed convex subset of B, let $T: K \rightarrow 2^{B^{*}}$ be a set-valued mapping and let $f: K \rightarrow R \bigcup\{+\infty\}$ be a functional. We consider the following generalized variational inequality:

Find $x \in K$, such that there exists $u \in T x$ satisfying

$$
\begin{equation*}
\langle u, y-x\rangle+f(y)-f(x) \geq 0, \text { for all } y \in K . \tag{1.1}
\end{equation*}
$$

The set of solutions of the generalized variational inequality (1.1) is denoted by Ω.

If $f \equiv 0$ and T is single-valued, then (1.1) reduces to the classical variational inequality which consists in finding $x \in K$ such that

$$
\begin{equation*}
\langle T x, y-x\rangle \geq 0, \text { for all } y \in K \tag{1.2}
\end{equation*}
$$

The set of solutions of the classical variational inequality (1.2) is denoted by $V I(K, T)$. The theory of variational inequalities has been intensively considered due to its various applications in operations research, economic equilibrium and engineering design. One of the most interesting and important problems in the theory of the variational inequality is the development of efficient iterative algorithms for approximating its solutions. Many iterative methods for solving the variational inequality (1.2) have been developed, e.g., see [1,6,7,9,11-13,15-17]. Alber[1-3] introduced the generalized projections $\pi_{K}: B^{*} \rightarrow K$ and $\Pi_{K}: B \rightarrow K$ in uniformly convex and uniformly smooth Banach spaces. $\mathrm{Li}[16]$ extended the generalized projections from uniformly convex and uniformly smooth Banach spaces to reflexive Banach spaces. Many scholars studied various iterative algorithms to solve the variational inequality (1.2) by using the generalized projections, see $[6,9,13,15,17]$. But, due to the presence of nonlinear terms, the projection methods presented in [6,9,13,15,17] cannot be applied to suggest any iterative scheme for generalized variational inequality (1.1) in Banach spaces. Fortunately, Wu and Huang in [20,21] introduced a new generalized f-projection operator. They in [20] proposed an iterative method of approximate solutions for the generalized variational inequality (1.1) when T is single-valued and f is convex lower semi-continuous and positively homogeneous in compact subsets of Banach spaces. Recently, Fan et al. [10] established a Mann type iterative scheme of approximating solutions for generalized variational inequality (1.1) when T is set-valued in noncompact subsets of Banach spaces, without assuming the positive homogeneity of f. More precisely, they proved the following theorem:

Theorem FLL. (Fan, Liu and Li [10], Theorem 3.5) Let B be a uniformly convex and uniformly smooth Banach space and let K be a closed convex subset of B and $0 \in K$. Let $f: K \rightarrow R$ be convex, lower semi-continuous and $f(x) \geq 0$ for all $x \in K$ and $f(0)=0$. Let $T: K \rightarrow 2^{B^{*}}$ be upper-continuous with closed values; Suppose that there exists a positive number ρ such that

$$
\left\langle u, J^{*}(J x-\rho u)\right\rangle \geq 0, \text { for all } x \in K, u \in T x
$$

and $J-\rho T: K \rightarrow 2^{B^{*}}$ is compact. Suppose

$$
\langle\rho u, y\rangle+\rho f(y) \leq 0, \text { for all } x \in K, u \in T x, y \in \Omega
$$

Then the variational inequality (1.1) has a solution $x^{*} \in K$ and the sequence $\left\{x_{n}\right\}$ defined by the following iteration scheme:

$$
\left\{\begin{array}{l}
u_{n} \in T x_{n}, \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} \pi_{K}^{f}\left(J x_{n}-\rho u_{n}\right), \quad n=0,1,2, \cdots,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ satisfies: (a) $0 \leq \alpha_{n} \leq 1$ for all $n=0,1,2, \cdots$; (b) $\sum_{n=0}^{\infty} \alpha_{n}(1-$ $\left.\alpha_{n}\right)=\infty$, converges strongly to $x^{*} \in K$

In addition, Qin et al. [19] introduced a hybrid projection algorithm to find a common element of the set of solutions of an equilibrium problem and the set of common fixed points of two quasi- ϕ-nonexpansive mappings in Banach spaces. More precisely, they proposed the following iterative sequence:

$$
\left\{\begin{array}{l}
x_{0} \in B \quad \text { chosen arbitrarily }, \\
C_{1}=K \\
x_{1}=\Pi_{C_{1}} x_{0} \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\beta_{n} J T x_{n}+\gamma_{n} J S x_{n}\right) \\
u_{n} \in K \text { such that } f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geq 0, \quad \forall y \in K \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, u_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}
\end{array}\right.
$$

On the other hand, Kohasaka and Takahashi [14] introduced the definition of the relatively weak nonexpansive mapping. They proved that $J_{r}=$ $(J+r A)^{-1} J$, for $r>0$ is relatively weak nonexpansive, where $A \subset B \times B^{*}$ is a continuous monotone mapping with $A^{-1} 0 \neq \emptyset$ and B is a smooth, strictly convex and reflexive Banach space. Very recently, Liu [1] introduced a new iterative sequence by using a hybrid generalized projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of the variational inequality (1.2) in a noncompact subsets of Banach spaces without assuming the compactness of the operator $J-\rho T$.

Although Theorem FLL removes the compactness of K, but it is assumed that $J-\rho T$ is compact which is a very strong condition. Motivated by [1], [10], [19] and some other related papers, our purpose in this paper is to establish a new iteration sequence for approximating the common element of the set of solutions of the generalized variational inequality (1.1) and the set of fixed points of a relatively weak nonexpansive mapping in noncompact subsets of Banach spaces without assuming the compactness of the operator $J-\rho T$.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers, respectively.

Let X, Y be two topological spaces. Let $F: X \rightarrow 2^{Y}$ be a set-valued mapping with nonempty values, F is said to be:
(i) upper semi-continuous at $x_{0} \in X$ if, for any open set V in Y containing $F\left(x_{0}\right)$, there exists an open neighborhood U of x_{0} in X such that $F(U) \subset V$;
(ii) upper semi-continuous in X if it is upper semi-continuous at each point of X;
(iii) closed if it has a closed graph, i.e., $\operatorname{GrF}=\{(x, y): x \in X, y \in F(x)\}$ is closed in $X \times Y$;
(iv) compact if it is continuous and maps the bounded subset of $D(F)$ onto the relatively compact subsets of Y.
When $\left\{x_{n}\right\}$ is a sequence in B, we denote strong convergence of $\left\{x_{n}\right\}$ to $x \in B$ by $x_{n} \rightarrow x$.

Let $U=\{x \in B:\|x\|=1\}$. A Banach space B is said to be strictly convex if $\left\|\frac{x+y}{2}\right\|<1$ for all $x, y \in U$ and $x \neq y$. It is also said to be uniformly convex if $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ for any two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ in U and $\lim _{n \rightarrow \infty}\left\|\frac{x_{n}+y_{n}}{2}\right\|=$ 1. A Banach space B is said to be smooth provided $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for each $x, y \in U$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in U$.

In [1], Alber introduced the functional $V: B^{*} \times B \rightarrow R$ defined by

$$
V(\phi, x)=\|\phi\|^{2}-2\langle\phi, x\rangle+\|x\|^{2}
$$

where $\phi \in B^{*}, x \in B$ and B is a uniformly convex and uniformly smooth Banach space.

It is easy to see that $V(\phi, x) \geq(\|\phi\|-\|x\|)^{2}$. Thus the functional V : $B^{*} \times B \rightarrow R^{+}$is nonnegative.

Definition 1. ([1]) If B is a uniformly convex and uniformly smooth Banach space, the generalized projection $\pi_{K}: B^{*} \rightarrow K$ is a mapping that assigns an arbitrary point $\phi \in B^{*}$ to the minimum point of the functional $V(\phi, x)$, i.e., a solution to the minimization problem

$$
V\left(\phi, \pi_{K}(\phi)\right)=\inf _{y \in K} V(\phi, y)
$$

In $[1,16]$, we can find the following properties of V and π_{K} :
(i) $V: B^{*} \times B \rightarrow R$ is continuous.
(ii) $V(\phi, x)=0$ if and only if $\phi=J x$.
(iii) $V\left(J \pi_{K} \phi, x\right) \leq V(\phi, x)$ for all $\phi \in B^{*}$ and $x \in B$.
(iv) $V(\phi, x)$ is convex with respect to ϕ when x is fixed and with respect to x when ϕ is fixed.
(v) The operator π_{K} is J fixed at each point $x \in K$, i.e., $\pi_{K}(J x)=x$.

The functional $V_{2}: B \times B \rightarrow R$ is defined by $V_{2}(x, y)=V(J x, y), \forall x, y \in B$. From [1], we know that if B is strictly convex, then $V_{2}(x, y)=0$ if and only if $x=y$.

Let $f: K \rightarrow R \bigcup\{+\infty\}$ be proper, convex and lower semi-continuous, Wu and Huang [21] introduced the functional $G: B^{*} \times K \rightarrow R \bigcup\{+\infty\}$ defined as follows:

$$
G(\phi, x)=\|\phi\|^{2}-2\langle\phi, x\rangle+\|x\|^{2}+2 \rho f(x),
$$

where $\phi \in B^{*}, x \in B$ and $\rho>0$ is a fixed constant. In fact, $G(\phi, x)=$ $V(\phi, x)+2 \rho f(x)$.

From the definitions of G and f, it is easy to have the following properties:
i) $G(\phi, x)$ is convex and continuous with respect to ϕ when x is fixed;
ii) $G(\phi, x)$ is convex and lower semi-continuous with respect to x when ϕ is fixed;
iii) $(\|\phi\|-\|x\|)^{2}+2 \rho f(x) \leq G(\phi, x) \leq(\|\phi\|+\|x\|)^{2}+2 \rho f(x)$.

The functional $G_{2}: B \times B \rightarrow R$ is defined by

$$
G_{2}(x, y)=G(J x, y), \quad \forall x, y \in B
$$

From the definitions of V_{2} and G_{2}, we have $G_{2}(x, y)=V_{2}(x, y)+2 \rho f(y)$ for all $x, y \in B$.
Remark 1. If $f \equiv 0$, then $G(\phi, x)=V(\phi, x), \forall \phi \in B^{*}, x \in K$.
Definition 2. ([21]) Let B be a Banach space with dual space B^{*} and K be a nonempty, closed and convex subset of B. We say that $\pi_{K}^{f}: B^{*} \rightarrow 2^{K}$ is a generalized f-projection operator if

$$
\pi_{K}^{f} \phi=\left\{u \in K: G(\phi, u)=\inf _{y \in K} G(\phi, y)\right\} \forall \phi \in B^{*}
$$

Remark 2. If $f \equiv 0$, then the generalized f-projection operator reduces to the generalized projection operator $\pi_{K}: B^{*} \rightarrow K$ defined by Alber [1] and Li [16].
Definition 3. We say that a Banach space B has the property (h) if $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ implies $x_{n} \rightarrow x$.
Remark 3. It is well known that any locally uniformly convex space has the property (h).

Let B be a reflexive and strictly convex Banach space with dual space B^{*} and K be a nonempty closed convex subset of B. Let $f: K \rightarrow R \bigcup\{+\infty\}$ is proper, convex, lower semi-continuous, then the following properties of the operator π_{K}^{f} can be found in $[10,20]$:
(f1) For any given $\phi \in B^{*}, \pi_{K}^{f} \phi$ is a nonempty, closed and convex subset of K;
(f2) π_{K}^{f} is monotone, i.e., for any $\phi_{1}, \phi_{2} \in B^{*}, x_{1} \in \pi_{K}^{f} \phi_{1}$ and $x_{2} \in \pi_{K}^{f} \phi_{2}$,

$$
\left\langle x_{1}-x_{2}, \phi_{1}-\phi_{2}\right\rangle \geq 0
$$

(f3) If B is smooth, then for any given $\phi \in B^{*}, x \in \pi_{K}^{f} \phi$ if and only if

$$
\langle\phi-J x, x-y\rangle+\rho f(y)-\rho f(x) \geq 0, \forall y \in K
$$

(f4) $\pi_{K}^{f}: B^{*} \rightarrow K$ is single-valued and norm to weak continuous;
(f5) moreover, if B has the property (h), then $\pi_{K}^{f}: B^{*} \rightarrow K$ is continuous.
Using the property (f3) of the generalized f-projection operator π_{K}^{f}, Fan et al. obtained the following lemma in [10].
Lemma 2.1. Let B be a smooth reflexive Banach space with dual space B^{*}. Let $T: K \rightarrow 2^{B^{*}}$ be a set-valued mapping, $\rho>0$. Then the point $x^{*} \in K$ solves the generalized variational inequality (1.1) if and only if x^{*} solves the following inclusion:

$$
x \in \pi_{K}^{f}(J x-\rho T x)
$$

From the proof of lemma 4.1 in [20], we can obtain the following lemma which plays an important role in the proof of our main result.
Lemma 2.2. If B is smooth, then for any given $\phi \in B^{*}, x \in \pi_{K}^{f} \phi$, the following inequality holds

$$
G(J x, y) \leq G(\phi, y)-G(\phi, x)+2 \rho f(y), \quad \forall y \in K
$$

Proof. From the property (f 3) of the generalized f-projection operator π_{K}^{f}, we know that

$$
\langle\phi-J x, x-y\rangle+\rho f(y)-\rho f(x) \geq 0, \quad \forall y \in K
$$

and so

$$
-2\langle\phi, y\rangle+2 \rho f(y) \geq 2\|x\|^{2}-2\langle\phi, x\rangle-2\langle J x, y\rangle+2 \rho f(x)
$$

It follows that
$\|\phi\|^{2}-2\langle\phi, y\rangle+\|y\|^{2}+2 \rho f(y) \geq\|\phi\|^{2}-2\langle\phi, x\rangle+\|x\|^{2}+2 \rho f(x)+\|J x\|^{2}-2\langle J x, y\rangle+\|y\|^{2}$.
This implies that

$$
G(\phi, y) \geq G(J x, y)+G(\phi, x)-2 \rho f(y)
$$

and so

$$
G(J x, y) \leq G(\phi, y)-G(\phi, x)+2 \rho f(y) .
$$

Furthermore, from lemma 4.1 of [20], we know that if for all $x \in K, f(x) \geq 0$, then

$$
G(J x, y) \leq G(\phi, y)+2 \rho f(y), \quad \forall y \in K
$$

Lemma 2.3. ([8]) Let B be a uniformly convex and uniformly smooth Banach space. We have

$$
\|\phi+\Phi\|^{2} \leq\|\phi\|^{2}+2\left\langle\Phi, J^{*}(\phi+\Phi)\right\rangle, \quad \forall \phi, \Phi \in B^{*}
$$

Lemma 2.4. ([22]) Let B be a uniformly convex Banach space and let $r>0$. Then there exists a continuous strictly increasing convex function $g:[0,2 r] \rightarrow$ R such that $g(0)=0$ and

$$
\|t x+(1-t) y\|^{2} \leq t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t) g(\|x-y\|)
$$

for all $x, y \in B_{r}$ and $t \in[0,1]$, where $B_{r}=\{z \in B:\|z\| \leq r\}$.
Lemma 2.5. ([10]) Let B be a uniformly convex and smooth Banach space and let $\left\{y_{n}\right\},\left\{z_{n}\right\}$ be two sequences of B. If $V_{2}\left(y_{n}, z_{n}\right) \rightarrow 0$, and either $\left\{y_{n}\right\}$ or $\left\{z_{n}\right\}$ is bounded, then $y_{n}-z_{n} \rightarrow 0$.

Lemma 2.6. Let B be a uniformly convex and uniformly smooth Banach space and K be a nonempty, closed convex subset of B. Let $f: K \rightarrow R$ be a convex lower semi-continuous functional and $f(x) \geq 0$ for all $x \in K$. Suppose that there exists a positive number ρ such that

$$
\begin{equation*}
\left\langle u, J^{*}(J x-\rho u)\right\rangle \geq 0, \quad \text { for all } \quad x \in K, u \in T x \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle u, y\rangle+f(y) \leq 0, \quad \forall x \in K, u \in T x, y \in \Omega . \tag{2.2}
\end{equation*}
$$

Then the set of solutions of the generalized variational inequality (1.1) Ω is closed and convex.

Proof. We first show that Ω is closed. Let $\left\{x_{n}\right\}$ be a sequence of Ω such that $x_{n} \rightarrow \hat{x} \in K$. Let $\hat{u} \in T \hat{x}$, then it follows from the definitions of V_{2}, G_{2}, G, lemma 2.2, the property (ii) of G and (2.1), (2.2) that

$$
\begin{aligned}
0 \leq & V_{2}\left(\pi_{K}^{f}(J \hat{x}-\rho \hat{u}), \hat{x}\right) \\
= & G_{2}\left(\pi_{K}^{f}(J \hat{x}-\rho \hat{u}), \hat{x}\right)-2 \rho f(\hat{x}) \\
= & G\left(J \pi_{K}^{f}(J \hat{x}-\rho \hat{u}), \hat{x}\right)-2 \rho f(\hat{x}) \\
\leq & G(J \hat{x}-\rho \hat{u}, \hat{x})+2 \rho f(\hat{x})-2 \rho f(\hat{x}) \\
= & G(J \hat{x}-\rho \hat{u}, \hat{x}) \leq \liminf _{n \rightarrow \infty} G\left(J \hat{x}-\rho \hat{u}, x_{n}\right) \\
= & \liminf _{n \rightarrow \infty}\left(\|J \hat{x}-\rho \hat{u}\|^{2}-2\left\langle J \hat{x}-\rho \hat{u}, x_{n}\right\rangle+\left\|x_{n}\right\|^{2}+2 \rho f\left(x_{n}\right)\right) \\
\leq & \liminf _{n \rightarrow \infty}\left(\|J \hat{x}\|^{2}-2 \rho\left\langle\hat{u}, J^{*}(J \hat{x}-\rho \hat{u})\right\rangle-2\left\langle J \hat{x}, x_{n}\right\rangle+2 \rho\left\langle\hat{u}, x_{n}\right\rangle\right. \\
& \left.+2 \rho f\left(x_{n}\right)+\left\|x_{n}\right\|^{2}\right) \\
\leq & \liminf _{n \rightarrow \infty} V_{2}\left(\hat{x}, x_{n}\right) \\
= & V_{2}(\hat{x}, \hat{x}) \\
= & 0
\end{aligned}
$$

which implies that $\hat{x}=\pi_{K}^{f}(J \hat{x}-\rho \hat{u})$, i.e., $\hat{x} \in \pi_{K}^{f}(J \hat{x}-\rho T \hat{x})$. So, we have $\hat{x} \in \Omega$. Next, we show that Ω is convex. For $x, y \in \Omega$ and $t \in(0,1)$, put
$z=t x+(1-t) y$. It is sufficient to show $z \in \pi_{K}^{f}(J z-\rho T z)$. Let $u_{z} \in T z$, in fact, we have

$$
\begin{aligned}
0 & \leq V_{2}\left(\pi_{K}^{f}\left(J z-\rho u_{z}\right), z\right) \\
& =G\left(J \pi_{K}^{f}\left(J z-\rho u_{z}\right), z\right)-2 \rho f(z) \\
& \leq G\left(J z-\rho u_{z}, z\right)+2 \rho f(z)-2 \rho f(z) \\
& =G\left(J z-\rho u_{z}, z\right) \\
& =\left\|J z-\rho u_{z}\right\|^{2}-2\left\langle J z-\rho u_{z}, z\right\rangle+\|z\|^{2}+2 \rho f(z) \\
& \leq\|J z\|^{2}-2 \rho\left\langle u_{z}, J^{*}\left(J z-\rho u_{z}\right)\right\rangle-2\langle J z, z\rangle+2 \rho\left\langle u_{z}, z\right\rangle+2 \rho f(z)+\|z\|^{2} \\
& \leq 2 \rho\left(\left\langle u_{z}, z\right\rangle+f(z)\right) \\
& =2 \rho\left(\left\langle u_{z}, t x+(1-t) y\right\rangle+f(t x+(1-t) y)\right) \\
& \leq 2 \rho\left(t\left\langle u_{z}, x\right\rangle+(1-t)\left\langle u_{z}, y\right\rangle+t f(x)+(1-t) f(y)\right) \\
& \leq 0
\end{aligned}
$$

This implies that $z \in \pi_{K}^{f}(J z-\rho T z)$. Therefore, Ω is closed and convex.
Remark 4. If $f \equiv 0$ and T is single-valued, then (2.1) and (2.2) reduces to (2.3) and (2.4) as follows respectively:

$$
\begin{equation*}
\left\langle T x, J^{*}(J x-\rho T x)\right\rangle \geq 0, \quad \text { for all } x \in K \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle T x, y\rangle \leq 0, \quad \forall x \in K, y \in V I(K, T) \tag{2.4}
\end{equation*}
$$

Let S be a mapping from K into itself. We denote by $F(S)$ the set of fixed points of S. A point p in K is said to be an asymptotic fixed point of S [4] if K contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0$. The set of asymptotic fixed point of S will be denoted by $\hat{F}(S)$. A mapping S from K into itself is called relatively nonxpansive (see, eg., $[4,5,18])$ if $\hat{F}(S)=F(S)$ and $V_{2}(S x, p) \leq V_{2}(x, p)$ for all $x \in K$ and $p \in F(S)$. The asymptotic behavior of relatively nonexpansive mappings were studied in [4,5]. A point p in K is said to be a strong asymptotic fixed point of S if K contains a sequence $\left\{x_{n}\right\}$ which converges strongly to p such that $\lim _{n \rightarrow \infty} \| x_{n}-$ $S x_{n} \|=0$. The set of strong asymptotic fixed points of S will be denoted by $\tilde{F}(S)$. A mapping S from K into itself is called relatively weak nonexpansive [14] if $\tilde{F}(S)=F(S)$ and $V_{2}(S x, p) \leq V_{2}(x, p)$ for all $x \in K$ and $p \in F(S)$. If B is smooth, strictly convex and reflexive Banach space, and $A \subset B \times B^{*}$ is a continuous monotone mapping with $A^{-1} 0 \neq \emptyset$, then it is proved in [14] that $J_{r}=(J+r A)^{-1} J$, for $r>0$ is relatively weak nonexpansive. Moreover, if $S: K \rightarrow K$ is relatively weak nonexpansive, then using the definition of V_{2} (i.e.the same argument as in the proof of $[18, \mathrm{p} .260]$), we can show that $F(S)$ is closed and convex.

It is obvious that relatively nonexpansive mapping is relatively weak nonexpansive mapping. In fact, for any mapping $S: K \rightarrow K$ we have $F(S) \subset$ $\tilde{F}(S) \subset \hat{F}(S)$. Therefore, if S is a relatively nonexpansive mapping, then $F(S)=\tilde{F}(S)=\hat{F}(S)$.

3. Main results

For any $x_{0} \in K$, we define the iteration process $\left\{x_{n}\right\}$ as follows:

$$
\left\{\begin{align*}
x_{0} & \in K \quad \text { chosen arbitrarily, } \\
z_{n} & =\pi_{K}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right), \\
u_{n} & \in T z_{n} \tag{3.1}\\
y_{n} & =J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J \pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)\right), \\
C_{0} & =K, \\
C_{n+1} & =\left\{u \in C_{n}: G_{2}\left(y_{n}, u\right) \leq G_{2}\left(x_{n}, u\right)\right\}, \\
x_{n+1} & =\pi_{C_{n+1}}^{f} J x_{0},
\end{align*}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
0 \leq \alpha_{n}<1, \text { and } \limsup _{n \rightarrow \infty} \alpha_{n}<1 ; 0<\beta_{n}<1 \text { and } \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0
$$

Theorem 3.1. Let B be a uniformly convex and uniformly smooth Banach space and let K be a nonempty, closed convex subset of B. Let $f: K \rightarrow R$ be convex, lower semi-continuous and $f(x) \geq 0$ for all $x \in K$. Assume that $T: K \rightarrow 2^{B^{*}}$ is a set-valued mapping that satisfies conditions (2.1) and (2.2) and $S: K \rightarrow K$ is a relatively weak nonexpansive mapping with $\Omega \bigcap F(S) \neq \emptyset$. If $T: K \rightarrow 2^{B^{*}}$ is upper semi-continuous with closed values, then the sequence $\left\{x_{n}\right\}$ defined by (3.1) converges strongly to $\pi_{\Omega \cap F(S)}^{f} J x_{0}$.

Proof. We first show that C_{n} is closed and convex for each $n \in N \bigcup\{0\}$. It is obvious that $C_{0}=K$ is closed and convex. Suppose that C_{k} is closed and convex for some $k \in N$. For $u \in C_{k}$, we obtain that

$$
G_{2}\left(y_{k}, u\right) \leq G_{2}\left(x_{k}, u\right)
$$

is equivalent to

$$
2\left\langle J x_{k}-J y_{k}, u\right\rangle \leq\left\|x_{k}\right\|^{2}-\left\|y_{k}\right\|^{2} .
$$

It is easy to see that C_{k+1} is closed and convex. Then, for all $n \geq 0, C_{n}$ is closed and convex. This shows that $\pi_{C_{n+1}}^{f} J x_{0}$ is well defined. Next, we show that $\Omega \bigcap F(S) \subset C_{n}$ for all $n \in N \bigcup\{0\} . \Omega \bigcap F(S) \subset C_{0}=K$ is obvious. Suppose $\Omega \bigcap F(S) \subset C_{k}$ for some $k \in N$. Then, for $\forall p \in \Omega \bigcap F(S) \subset C_{k}$, it
follows from the definitions of G_{2}, V, V_{2}, S and properties (iii), (iv) of V that

$$
\begin{align*}
G_{2}\left(z_{k}, p\right) & =V_{2}\left(z_{k}, p\right)+2 \rho f(p) \\
& =V\left(J z_{k}, p\right)+2 \rho f(p) \\
& \leq V\left(\beta_{k} J x_{k}+\left(1-\beta_{k}\right) J S x_{k}, p\right)+2 \rho f(p) \\
& \leq \beta_{k} V\left(J x_{k}, p\right)+\left(1-\beta_{k}\right) V\left(J S x_{k}, p\right)+2 \rho f(p) \tag{3.2}\\
& =\beta_{k} V_{2}\left(x_{k}, p\right)+\left(1-\beta_{k}\right) V_{2}\left(S x_{k}, p\right)+2 \rho f(p) \\
& \leq \beta_{k} V_{2}\left(x_{k}, p\right)+\left(1-\beta_{k}\right) V_{2}\left(x_{k}, p\right)+2 \rho f(p) \\
& =G_{2}\left(x_{k}, p\right) .
\end{align*}
$$

Therefore, from the properties of G, lemma 2.2, lemma 2.3, inequalities (2.1), (2.2) and (3.2), we obtain

$$
\begin{aligned}
G_{2}\left(y_{k}, p\right)= & G\left(J y_{k}, p\right) \\
= & G\left(\alpha_{k} J x_{k}+\left(1-\alpha_{k}\right) J \pi_{K}^{f}\left(J z_{k}-\rho u_{k}\right), p\right) \\
\leq & \alpha_{k} G\left(J x_{k}, p\right)+\left(1-\alpha_{k}\right) G\left(J \pi_{K}^{f}\left(J z_{k}-\rho u_{k}\right), p\right) \\
\leq & \alpha_{k} G_{2}\left(x_{k}, p\right)+\left(1-\alpha_{k}\right) G\left(J z_{k}-\rho u_{k}, p\right)+2\left(1-\alpha_{k}\right) \rho f(p) \\
= & \alpha_{k} G_{2}\left(x_{k}, p\right)+\left(1-\alpha_{k}\right)\left\{\left\|J z_{k}-\rho u_{k}\right\|^{2}-2\left\langle J z_{k}-\rho u_{k}, p\right\rangle+\|p\|^{2}\right. \\
& +2 \rho f(p)\}+2\left(1-\alpha_{k}\right) \rho f(p) \\
\leq & \alpha_{k} G_{2}\left(x_{k}, p\right)+\left(1-\alpha_{k}\right)\left\{\left\|J z_{k}\right\|^{2}-2 \rho\left\langle u_{k}, J^{*}\left(J z_{k}-\rho u_{k}\right)\right\rangle\right. \\
& \left.-2\left\langle J z_{k}, p\right\rangle+2 \rho\left\langle u_{k}, p\right\rangle+\|p\|^{2}+2 \rho f(p)\right\}+2\left(1-\alpha_{k}\right) \rho f(p) \\
\leq & \alpha_{k} G_{2}\left(x_{k}, p\right)+\left(1-\alpha_{k}\right) G_{2}\left(z_{k}, p\right) \\
\leq & G_{2}\left(x_{k}, p\right)
\end{aligned}
$$

which shows that $p \in C_{k+1}$. This implies that $\Omega \bigcap F(S) \subset C_{n}$ for all $n \in$ $N \bigcup\{0\}$. From $x_{n}=\pi_{C_{n}}^{f} J x_{0}$, we have

$$
\begin{equation*}
\left\langle J x_{0}-J x_{n}, x_{n}-y\right\rangle+\rho f(y)-\rho f\left(x_{n}\right) \geq 0, \quad \forall y \in C_{n} \tag{3.3}
\end{equation*}
$$

Since $\Omega \bigcap F(S) \subset C_{n}$ for all $n \in N \bigcup\{0\}$, we arrive at

$$
\begin{equation*}
\left\langle J x_{0}-J x_{n}, x_{n}-p\right\rangle+\rho f(p)-\rho f\left(x_{n}\right) \geq 0, \quad \forall p \in \Omega \bigcap F(S) \tag{3.4}
\end{equation*}
$$

Using $x_{n}=\pi_{C_{n}}^{f} J x_{0}$ and $\Omega \bigcap F(S) \subset C_{n}$, we have $G\left(J x_{0}, x_{n}\right) \leq G\left(J x_{0}, p\right)$ for each $p \in \Omega \bigcap F(S)$. Therefore, $\left\{G\left(J x_{0}, x_{n}\right)\right\}$ is bounded. Moreover, it follows from lemma 2.2 that $G\left(J x_{n}, p\right) \leq G\left(J x_{0}, p\right)-G\left(J x_{0}, x_{n}\right)+2 \rho f(p), \forall p \in$ $\Omega \bigcap F(S)$. From the definitions of G and V, we have $V\left(J x_{n}, p\right) \leq G\left(J x_{0}, p\right)-$ $G\left(J x_{0}, x_{n}\right)$. Since $\left\{G\left(J x_{0}, x_{n}\right)\right\}$ is bounded, we can obtain that $\left(\left\|J x_{n}\right\|-\right.$ $\|p\|)^{2} \leq V\left(J x_{n}, p\right) \leq M$, where $M=\sup \left\{\left|G\left(J x_{0}, p\right)\right|+\left|G\left(J x_{0}, x_{n}\right)\right|\right\}$. This implies that $\left\{x_{n}\right\}$ is also bounded. On the other hand, noticing that $x_{n}=\pi_{C_{n}}^{f} J x_{0}$ and $x_{n+1}=\pi_{C_{n+1}}^{f} J x_{0} \in C_{n+1} \subset C_{n}$, we have $G\left(J x_{0}, x_{n}\right) \leq G\left(J x_{0}, x_{n+1}\right)$ for each $n \in N \bigcup\{0\}$. Therefore, $\left\{G\left(J x_{0}, x_{n}\right)\right\}$ is nondecreasing. So there exists the limit of $G\left(J x_{0}, x_{n}\right)$. By the construction of C_{n}, we have that $C_{m} \subset C_{n}$ and
$x_{m}=\pi_{C_{m}}^{f} J x_{0} \in C_{n}$ for any positive integer $m \geq n$. It follows from lemma 2.2 that $G\left(J x_{n}, x_{m}\right) \leq G\left(J x_{0}, x_{m}\right)-G\left(J x_{0}, x_{n}\right)+2 \rho f\left(x_{m}\right)$, which implies that

$$
\begin{equation*}
V_{2}\left(x_{n}, x_{m}\right) \leq G\left(J x_{0}, x_{m}\right)-G\left(J x_{0}, x_{n}\right) . \tag{3.5}
\end{equation*}
$$

Letting $m, n \rightarrow \infty$ in (3.5), we have $V_{2}\left(x_{n}, x_{m}\right) \rightarrow 0$. It follows from lemma 2.5 that $x_{n}-x_{m} \rightarrow 0$ as $m, n \rightarrow \infty$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since B is a Banach space and K is closed and convex, we can assume that $x_{n} \rightarrow x^{*} \in K$ as $n \rightarrow \infty$.

Next, we show that $x^{*} \in \Omega \bigcap F(S)$. By taking $m=n+1$ in (3.5), we arrive at

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V_{2}\left(x_{n}, x_{n+1}\right)=0 \tag{3.6}
\end{equation*}
$$

Noticing that $x_{n+1} \in C_{n+1}$, we obtain $G_{2}\left(y_{n}, x_{n+1}\right) \leq G_{2}\left(x_{n}, x_{n+1}\right)$. It is equivalent to $V_{2}\left(y_{n}, x_{n+1}\right) \leq V_{2}\left(x_{n}, x_{n+1}\right)$. It follows from (3.6) that $\lim _{n \rightarrow \infty}$ $V_{2}\left(y_{n}, x_{n+1}\right)=0$. From lemma 2.5, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n+1}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $x_{n} \rightarrow x^{*}$, then from $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|$ and (3.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Since $\left\|J y_{n}-J x_{n}\right\|=\left(1-\alpha_{n}\right)\left\|J \pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)-J x_{n}\right\|$ and $\limsup _{n \rightarrow \infty} \alpha_{n}<1$, we have

$$
\lim _{n \rightarrow \infty}\left\|J \pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)-J x_{n}\right\|=0
$$

Since J^{*} is also uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)-x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, then $\left\{J x_{n}\right\},\left\{J S x_{n}\right\}$ are also bounded. Moreover, since B is a uniformly smooth Banach space, we know that B^{*} is a uniformly convex Banach space. Therefore, lemma 2.4 is applicable. By the definitions of
G_{2}, V_{2}, V, S and the properties of V, for $\forall p \in \Omega \bigcap F(S)$, we have

$$
\begin{align*}
G_{2}\left(z_{n}, p\right)= & V_{2}\left(z_{n}, p\right)+2 \rho f(p) \\
= & V\left(J z_{n}, p\right)+2 \rho f(p) \\
\leq & V\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, p\right)+2 \rho f(p) \\
= & \left\|\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right\|^{2}-2\left\langle\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, p\right\rangle \\
& +\|p\|^{2}+2 \rho f(p) \\
\leq & \beta_{n}\left\|J x_{n}\right\|^{2}+\left(1-\beta_{n}\right)\left\|J S x_{n}\right\|^{2}-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
& -2 \beta_{n}\left\langle J x_{n}, p\right\rangle-2\left(1-\beta_{n}\right)\left\langle J S x_{n}, p\right\rangle+\|p\|^{2}+2 \rho f(p) \\
= & \beta_{n} V_{2}\left(x_{n}, p\right)+\left(1-\beta_{n}\right) V_{2}\left(S x_{n}, p\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
& +2 \rho f(p) \\
\leq & \beta_{n} V_{2}\left(x_{n}, p\right)+\left(1-\beta_{n}\right) V_{2}\left(x_{n}, p\right)+2 \rho f(p) \\
& -\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
= & G_{2}\left(x_{n}, p\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) . \tag{3.11}
\end{align*}
$$

From lemma 2.2, lemma 2.3, (2.1) and (2.2), we have

$$
\begin{aligned}
& G\left(J \pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right), p\right) \\
& \leq G\left(J z_{n}-\rho u_{n}, p\right)+2 \rho f(p) \\
& =\left\|J z_{n}-\rho u_{n}\right\|^{2}-2\left\langle J z_{n}-\rho u_{n}, p\right\rangle+\|p\|^{2}+2 \rho f(p)+2 \rho f(p) \\
& \leq\left\|J z_{n}\right\|^{2}-2 \rho\left\langle u_{n}, J^{*}\left(J z_{n}-\rho u_{n}\right)\right\rangle-2\left\langle J z_{n}, p\right\rangle+2 \rho\left\langle u_{n}, p\right\rangle+2 \rho f(p) \\
& \quad+\|p\|^{2}+2 \rho f(p) \\
& \leq G_{2}\left(z_{n}, p\right) .
\end{aligned}
$$

Combining (3.12) with (3.11), we obtain that

$$
\begin{aligned}
& G_{2}\left(y_{n}, p\right) \\
& =G\left(J y_{n}, p\right) \\
& \leq \alpha_{n} G\left(J x_{n}, p\right)+\left(1-\alpha_{n}\right) G\left(J \pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right), p\right) \\
& \leq \alpha_{n} G_{2}\left(x_{n}, p\right)+\left(1-\alpha_{n}\right) G_{2}\left(z_{n}, p\right) \\
& \leq \alpha_{n} G_{2}\left(x_{n}, p\right)+\left(1-\alpha_{n}\right)\left[G_{2}\left(x_{n}, p\right)-\beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right)\right] \\
& =G_{2}\left(x_{n}, p\right)-\left(1-\alpha_{n}\right) \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(1-\alpha_{n}\right) \beta_{n}\left(1-\beta_{n}\right) g\left(\left\|J x_{n}-J S x_{n}\right\|\right) & \leq G_{2}\left(x_{n}, p\right)-G_{2}\left(y_{n}, p\right) \\
& =\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}+2\left\langle J y_{n}-J x_{n}, p\right\rangle .
\end{aligned}
$$

By (3.8), (3.9) and $\limsup _{n \rightarrow \infty} \alpha_{n}<1, \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0$, we have $\lim _{n \rightarrow \infty} g\left(\| J x_{n}-\right.$ $\left.J S x_{n} \|\right)=0$. By the property of the function g, we obtain $\lim _{n \rightarrow \infty}\left\|J x_{n}-J S x_{n}\right\|=$

0 . Since J^{*} is also uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J^{*} J x_{n}-J^{*} J S x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Since $x_{n} \rightarrow x^{*}$, we have $x^{*} \in \tilde{F}(S)=F(S)$. Moreover, $S x_{n} \rightarrow x^{*}$ and $J S x_{n} \rightarrow J x^{*}$. Noting the properties of V, we derive that

$$
\begin{aligned}
V_{2}\left(z_{n}, x_{n}\right) & =V\left(J z_{n}, x_{n}\right) \\
& \leq V\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}, x_{n}\right) \\
& \leq \beta_{n} V\left(J x_{n}, x_{n}\right)+\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right) \\
& =\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right)
\end{aligned}
$$

By the continuity of the operator V, we have $\lim _{n \rightarrow \infty} V\left(J S x_{n}, x_{n}\right)=V\left(J x^{*}, x^{*}\right)=$ 0 and hence $\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right) V\left(J S x_{n}, x_{n}\right)=0$. Therefore, $\lim _{n \rightarrow \infty} V_{2}\left(z_{n}, x_{n}\right)=0$. From lemma 2.5, we have

$$
\begin{equation*}
\left\|x_{n}-z_{n}\right\| \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.14}
\end{equation*}
$$

Using inequalities (3.10) and (3.14), we obtain

$$
\begin{equation*}
\left\|\pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)-z_{n}\right\| \leq\left\|\pi_{K}^{f}\left(J z_{n}-\rho u_{n}\right)-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \rightarrow 0 \tag{3.15}
\end{equation*}
$$

Since $x_{n} \rightarrow x^{*}$, we have

$$
\begin{equation*}
z_{n} \rightarrow x^{*} \text { as } n \rightarrow \infty \tag{3.16}
\end{equation*}
$$

Since π_{K}^{f} is continuous and $J-\rho T$ is upper semi-continuous with closed values, then $\pi_{K}^{f}(J-\rho T)$ is upper semi-continuous with closed values. From (3.15) and (3.16), we have $x^{*} \in \pi_{K}^{f}\left(J x^{*}-\rho T x^{*}\right)$. By lemma 2.1, we have $x^{*} \in \Omega$. This shows that $x^{*} \in \Omega \bigcap F(S)$.

Finally, we prove $x^{*}=\pi_{\Omega \cap F(S)}^{f} J x_{0}$. By taking lower-limit in (3.4), we have

$$
\left\langle J x_{0}-J x^{*}, x^{*}-p\right\rangle+\rho f(p)-\rho f\left(x^{*}\right) \geq 0, \quad \forall p \in \Omega \bigcap F(S)
$$

At this point, in view of the property (f 3) of π_{K}^{f}, we see that $x^{*}=\pi_{\Omega \cap F(S)}^{f} J x_{0}$.

If $S=I$, then (3.1) reduces to the modified Mann iteration for generalized variational inequality (1.1) and so we obtain the following result:

Corollary 3.2. Let B be a uniformly convex and uniformly smooth Banach space and let K be a nonempty, closed convex subset of B. Let $f: K \rightarrow R$ be convex, lower semi-continuous and $f(x) \geq 0$ for all $x \in K$. Assume that $T: K \rightarrow 2^{B^{*}}$ is a set-valued mapping that satisfies conditions (2.1) and (2.2) such that $\Omega \neq \emptyset$. If $T: K \rightarrow 2^{B^{*}}$ is upper semi-continuous with closed values
and the sequence $\left\{x_{n}\right\}$ is defined by the following modified Mann iteration

$$
\left\{\begin{array}{l}
x_{0} \in K \quad \text { chosen arbitrarily } \tag{3.17}\\
u_{n} \in T x_{n} \\
y_{n}=J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J \pi_{K}^{f}\left(J x_{n}-\rho u_{n}\right)\right) \\
C_{0}=K \\
C_{n+1}=\left\{u \in C_{n}: G_{2}\left(y_{n}, u\right) \leq G_{2}\left(x_{n}, u\right)\right\} \\
x_{n+1}=\pi_{C_{n+1}}^{f} J x_{0}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ satisfies:

$$
0 \leq \alpha_{n}<1 \text { and } \limsup _{n \rightarrow \infty} \alpha_{n}<1
$$

then the sequence $\left\{x_{n}\right\}$ converges strongly to $\pi_{\Omega}^{f} J x_{0}$.
Proof. Taking $S=I$ in theorem 3.1, by $x_{n} \in K$ and property(v) of the operator π_{K}, we have $z_{n}=\pi_{K} J x_{n}=x_{n}$. Thus, we can obtain the desired conclusion.

Remark 5. Corollary 3.1 improves theorem 3.5 of [10] in the following senses:
(1) the condition in theorem 3.5 of [10] that $J-\rho T: K \rightarrow 2^{B^{*}}$ is compact is removed, we only require that $T: K \rightarrow 2^{B^{*}}$ is upper semi-continuous with closed values;
(2) we obtain that the convergence point of $\left\{x_{n}\right\}$ is $\pi_{\Omega}^{f} J x_{0}$, which is more concrete than related conclusions of [10] and [20].
(3) we remove the condition that $0 \in K$ and $f(0)=0$.

If $f \equiv 0$ and T is single-valued, then (3.1) reduces to the following iteration sequence $\left\{x_{n}\right\}$:

$$
\left\{\begin{array}{l}
x_{0} \in K \quad \text { chosen arbitrarily, } \tag{3.18}\\
z_{n}=\pi_{K}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J S x_{n}\right) \\
y_{n}=J^{*}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J \pi_{K}\left(J z_{n}-\rho T z_{n}\right)\right) \\
C_{0}=K \\
C_{n+1}=\left\{u \in C_{n}: G_{2}\left(y_{n}, u\right) \leq G_{2}\left(x_{n}, u\right)\right\} \\
x_{n+1}=\pi_{C_{n+1}} J x_{0}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy:

$$
0 \leq \alpha_{n}<1, \text { and } \limsup _{n \rightarrow \infty} \alpha_{n}<1 ; 0<\beta_{n}<1 \text { and } \liminf _{n \rightarrow \infty} \beta_{n}\left(1-\beta_{n}\right)>0
$$

So we obtain the following result:
Corollary 3.3. Let B be a uniformly convex and uniformly smooth Banach space and let K be a nonempty, closed convex subset of B. Assume that T : $K \rightarrow B^{*}$ is a single-valued mapping that satisfies conditions (2.3) and (2.4) and $S: K \rightarrow K$ is a relatively weak nonexpansive mapping with $V I(K, T) \cap F(S) \neq$
\emptyset, where $V I(K, T)$ denotes the set of solutions of the classical variational inequality (1.2). If T is continuous, then the sequence $\left\{x_{n}\right\}$ defined by (3.18) converges strongly to $\pi_{V I(K, T) \cap F(S)} J x_{0}$.

Remark 6. The algorithm in corollary 3.2 is more simple and convenient to compute than the one given by Liu [17].

References

[1] Y. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type, Marcel Dekker, New York, 1996, pp. 15-50.
[2] Y. Alber, Proximal projection method for variational inequalities and Cesro averaged approximations, Comput. Math. Appl. 43 (2002), 1107-1124.
[3] Y. Alber and S. Delabriere, On the projection methods for fixed point problems, Analysis 21 (2001), 17-39.
[4] D. Butanriu, S. Reich and A. J. Zaslavski, Asymtotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001), 151-174.
[5] D. Butanriu, S. Reich and A. J. Zaslavski, Weakly convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003), 489-508.
[6] L. C. Ceng, S. Schaible and J. C.Yao, Strong convergence of iterative algorithms for variational inequalities in Banach spaces, J. Optim. Theory Appl. 141 (2009), 265-283.
[7] L. C. Ceng and J. C. Yao, Existence theorems for variational inequalities in Banach spaces, J. Optim. Theory Appl. 132 (2007), 321-337.
[8] S. S. Chang, On Chidumes open questions and approximate solutions of multivalued strongly accretive mapping in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94-111.
[9] J. Fan, A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces, J. Math. Anal. Appl. 337 (2008), 1041-1047.
[10] J. Fan, X. Liu and J. Li, Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997-4007.
[11] X. He, J. Chen and Z. He, Generalized projection method for a variational inequality system with different mapping in Banach spaces, Computers and Mathematics with Applications 58 (2009), 1391-1396.
[12] H. Iiduka and W.Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[13] H. Iiduka and W.Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl. 339 (2008), 668-679.
[14] F. Kohasaka and W. Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in Banach spaces, Abstr. Appl. Anal. 204 (2004), 239-249.
[15] J. Li, On the existence of solutions of variational inequalities in Banach spaces, J. Math. Anal. Appl. 295 (2004), 115-126.
[16] J. Li, The generalized projection operator on reflexive Banach spaces and its applications, J. Math. Anal. Appl. 306 (2005), 55-71.
[17] Y. Liu, Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319-329.
[18] S. Y. Matsushita and W.Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, Journal of Approximation Theory 134 (2005), 257-266.
[19] X. L. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, Journal of Computational and Applied Mathematics 225 (2009), 20-30.
[20] K. Q. Wu and N. J. Huang, Properties of the generalized f-projection operator and its applications in Banach spaces, Comput. Math. Appl. 54 (2007), 399-406.
[21] K. Q. Wu and N. J. Huang, The generalized f-projection operator with an application, Bull. Austral. Math. Soc. 73 (2006), 307-317.
[22] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138.

Ying LiU
College of Mathematics and Computer, Hebei University, No.180, Wusi eastRoad, Baoding, Hebei, China, 071002

E-mail address: ly_cyh2007@yahoo.com.cn

[^0]: Received December 24, 2010; Accepted May 4, 2012.
 2000 Mathematics Subject Classification. 47H09, 47H05, 47H06, 47J25, 47J05.
 Key words and phrases. Generalized variational inequalities, relatively weak nonexpansive mappings, generalized f-projection, Cauchy sequences, continuity.

 This work was financially supported by the Natural Science Youth Foundation of Hebei Education Commission(No. 2010110) and the Natural Science Youth Foundation of Hebei Province (No. A2011201053; A2010000191).

