
East Asian Mathematical Journal

Vol. 28 (2012), No. 1, pp. 13–23

PYTHAGOREAN-HODOGRAPH CUBICS AND

GEOMETRIC HERMITE INTERPOLATION

Hyun Chol Lee and Sunhong Lee∗

Abstract. In this paper, we present the geometric Hermite interpolation

for planar Pythagorean-hodograph cubics for some general Hermite data.

1. Introduction

To find an offset curve ro(t) = r(t) + dn(t) at a fixed distance d from a
given polynomial curve r(t), in the direction of its unit normal vector n(t), is
an important problem in computer aided geometric design. The offset ro(t) is
not, in general, a rational curve. Thus we need some approximation schemes
to deal with offsets of a polynomial curves.

However, if the speed function of a given polynomial curve is a polynomial,
then an offset curve can be expressed in a rational parametrization. For this
reason, the Pythagorean-hodograph (PH) curves, whose speed function is a
polynomial, were introduced by Farouki and Sakkalis ([6]). Since then, there
have been vast researches on this class of curves by themselves and others ([1],
[2], [3], [4], [5], and [11]). A PH curve r(t) = (x(t), y(t)) means a special polyno-
mial curve which is characterized by the algebraic property that its hodograph
r′(t) = (x′(t), y′(t)) satisfies the Pythagorean condition, that is,

x′2(t) + y′2(t) = σ2(t)

for some polynomial σ(t). So, the arc-length function and the offsets of the PH
curve are rational.

Meek and Walton ([9]) tried to solve the geometric Hermite interpolation
problem with Tschirnhausen cubics (T-cubics). However, we found a counter
example in Theorem 1 of [9]. Our goal is to present the proper geometric
Hermite interpolants with PH cubics. To reach the goal, we invoke the charac-
terization of the planar PH curves and Theorem about the planar PH cubics,
given by Farouki and Sakkalis ([6]). For spatial PH cubics, Pelosi et al. [10]
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partially gave the geometric Hermite interpolants. For Minkowski PH cubics,
Kosinka and Jütter [7] solved the geometric Hermite interpolation problem.

This paper is organized as follows: In Section 2, we introduce some fun-
damental definitions and properties of PH curves. In Section 3, we solve the
geometric Hermite interpolation problem with planar PH cubics. We, in Sec-
tion 4, see some examples of the geometric Hermite interpolants. Here we will
compare the bending energies of a piecewise PH cubic and a quadric Bézier
curve.

2. Preliminaries

In this section, we review some basic properties of the planar Pythagorean-
hodograph (PH) curves of degree three.

Let R and R2 be the field of real numbers and the plane respectively. Let
R[t] be the set of real polynomials in real variable t. A planar polynomial curve
r(t) is a function r : I → R2, which is defined on an open interval I into the
plane R2, and whose component functions of r(t) = (x(t), y(t)) are members of
R[t]. The hodograph of r(t) is the planar polynomial curve, which defined by
r′(t) = (x′(t), y′(t)) where x′(t), y′(t) are derivatives of x(t), y(t) with respect
to t, respectively.

The hodograph r′(t) = (x′(t), y′(t)) is said to be Pythagorean if there is a
polynomial σ(t) such that

x′(t)2 + y′(t)2 = σ(t)2.

A planar polynomial curve r(t) is called a Pythagorean-hodograph (PH) curve
if its hodograph r′(t) is Pythagorean (See [6]).

A planar polynomial curve r(t) = (x(t), y(t)) is said to be primitive if x(t)
and y(t) are relatively prime, i. e., gcd(x(t), y(t)) = 1. For relatively prime
polynomials u(t) and v(t), we can find the property:

Lemma 2.1. Suppose that polynomials u(t) and v(t) are relatively prime. Then
the polynomials u(t)2 − v(t)2 and u(t)v(t) are relatively prime.

Proof. Let x(t) = u(t)2 − v(t)2 and y(t) = u(t)v(t). Suppose that x(t) and
y(t) are not relatively prime. Then there exists an irreducible polynomial
d(t) such that d(t) |x(t) and d(t) | y(t). From d(t) |u(t)v(t), it is true that
d(t) |u(t) or d(t) | v(t). If d(t) |u(t), then since d(t) | [u(t)2 − v(t)2], d(t) | v(t),
which implies that u(t) and v(t) are not relatively prime. If d(t) | v(t), then
since d(t) | [u(t)2 − v(t)2], d(t) |u(t), which implies that u(t) and v(t) are not
relatively prime. �

We recall the characterization of the planar PH curves (See [6]). A polyno-
mial curve r(t) = (x(t), y(t)) is PH with a polynomial σ(t) such that

x′(t)2 + y′(t)2 = σ(t)2
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if and only if there are a monic polynomial w(t) and relatively prime polyno-
mials u(t) and v(t) such that

x′(t) = w(t)[u(t)2 − v(t)2],

y′(t) = w(t)[2u(t)v(t)],

σ(t) = w(t)[u(t)2 + v(t)2].

Now we consider the Bézier expression of a planar polynomial curve. For a
planar cubic r(t) = (x(t), y(t)), there are the points p0, p1, p2, and p3 such
that

r(t) = p0B0,3(t) + p1B1,3(t) + p2B2,3(t) + p3B3,3(t),

where

Bi,3(t) =
3!

(3− i)!i!
(1− t)3−iti

for i = 0, . . . , 3. The Bézier expression is invariant under affine transformation
(See [8]). That is, if T be an affine transformation for example, a rotation,
reflection, translation, or scaling, then

T

(
3∑
i=0

piBi,3(t)

)
=

3∑
i=0

T (pi)Bi,3(t).

Consider two linear polynomials u(t) and v(t) given in Bernstein-Bézier form
as

u(t) = u0B
1
0(t) + u1B

1
1(t), v(t) = v0B

1
0(t) + v1B

1
1(t),

where we assume that the ratios u0 : u1 and v0 : v1 are unequal. From the
Pythagorean hodograph r′(t) = (x′(t), y′(t)), given by

x′(t) = u(t)2 − v(t)2

= (u20 − v20)B2
0(t) + (u0u1 − v0v1)B2

1(t) + (u21 − v21)B2
2(t)

and

y′(t) = 2u(t)v(t) = 2u0v0B
2
0(t) + (u0v1 + u1v0)B2

1(t) + 2u1v1B
2
2(t),
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we obtain the PH curve r(t) = (x(t), y(t)), which may be expressed as

x(t) = x0 +

∫ t

0

u(s)2 − v(s)2 ds

= x0
(
B3

0(t) +B3
1(t) +B3

2(t) +B3
3(t)

)
+ (u20 − v20)

B3
1(t) +B3

2(t) +B3
3(t)

3

+ (u0u1 − v0v1)
B3

2(t) +B3
3(t)

3
+ (u21 − v21)

B3
3(t)

3

= x0B
3
0(t) +

(
x0 +

u20 − v20
3

)
B3

1(t)

+

(
x0 +

u20 − v20
3

+
u0u1 − v0v1

3

)
B3

2(t)

+

(
x0 +

u30 − v30
3

+
u0u1 − v0v1

3
+
u21 − v21

3

)
B3

3(t),

and

y(t) = y0 +

∫ t

0

2u(s)v(s) ds

= y0(B3
0(t) +B3

1(t) +B3
2(t) +B3

3(t))

+ (2u0v0)
B3

1(t) +B3
2(t) +B3

3(t)

3

+ (u0v1 + v0u1)
B3

2(t) +B3
3(t)

3
+ (2u1v1)

B3
3(t)

3

= y0B
3
0(t) +

(
y0 +

2u0v0
3

)
B3

1(t)

+

(
y0 +

2u0v0
3

+
u0v1 + v0u1

3

)
B3

2(t)

+

(
y0 +

2u0v0
3

+
u0v1 + v0u1

3
+

2u1v1
3

)
B3

3(t).

From these, we have the control points pk = (xk, yk) of the form

p1 = p0 +
1

3
(u20 − v20 , 2u0v0),

p2 = p1 +
1

3
(u0u1 − v0v1, u0v1 + u1v0),

p3 = p2 +
1

3
(u21 − v21 , 2u1v1),
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where p0 is arbitrary. We note that the parametric speed σ(t) of the PH curve
r(t) is

σ(t) = u(t)2 + v(t)2

= (u20 + v20)B2
0(t) + (u0u1 + v0v1)B2

1(t) + (u21 + v21)B2
2(t).

Now we consider the characterization of nonlinear planar PH cubics:

Theorem 2.2. (Farouki and Sakkalis, [6]) Let

r(t) = p0(1− t)3 + p13(1− t)2t+ p23(1− t)t2 + p3t
3

be a nonlinear planar cubic in the Bernstein-Bézier form. Let Lk = pk −pk−1
for k = 1, 2, 3 be the direction legs of the Bézier control polygon and Lk = ‖Lk‖
for k = 1, 2, 3. Let θ1 and θ2 are control-polygon angles at the interior vertices
p1 and p2. Then the conditions

L2
2 = L1 · L3 and θ1 = θ2

are sufficient and necessary to ensure that r(t) is a Pythagorean-hodograph
curve.

We set θ = θ1 = θ2, then we can see the parametric speed of the PH curve
r(t) is given

σ(t) = 3[L1B
2
0(t)− L2 cos θB2

1(t) + L3B
3
2(t)].

Recall that Pythagorean hodograph curves of degree n have just n−2 shape
freedoms. Although we expect the Pythagorean-hodograph cubics to exhibit
only one shape freedom, there are apparently three freedom associated with
the corresponding Bézier control polygons. Two of three lengths L1, L2, L3

can be freely chosen, as can the angel θ (= θ1 = θ2). However, two of these
freedoms are not essential shape freedoms, being expanded by the possibility
of reparameterization.

Corollary 2.3. (Farouki and Sakkalis, [6]) Nonlinear Pythagorean-hodograph
cubics have no real inflection points.

3. Main results

In this section, we will solve the geometric Hermite interpolation problem
with planar PH cubics.

Let r(t) = (x(t), y(t)) be a PH cubic. Then we have a monic polynomial
w(t) and relatively polynomials u(t) and v(t), which satisfy

x′(t) = w(t)[u(t)2 − v(t)2], y′(t) = w(t)[2u(t)v(t)].

Note that gcd(u(t), v(t)) = 1 implies max{deg(u(t)),deg(v(t))} = 0 or 1.
First, we easily characterize the PH cubics, which are lines:
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Lemma 3.1. Let r(t) = (x(t), y(t)) be a PH cubic such that

x′(t) = w(t)[u(t)2 − v(t)2],

y′(t) = w(t)[2u(t)v(t)],
(1)

for a monic polynomial w(t) and relatively prime polynomials u(t) and v(t).
Then the following are equivalent:

(a) r(t) is a line;
(b) max{deg(u(t)),deg(v(t))} = 0;
(c) deg(w(t)) = 2.

Proof. It is easy to prove (b)⇒ (c) and (c)⇒ (a). Here we just prove (a)⇒ (b).
Suppose that r(t) = (x(t), y(t)) be a line. Then there are some a, b, c ∈ R such
that ax(t) + by(t) + c = 0 with a2 + b2 6= 0. The equation a2 + b2 6= 0
results in three cases: (A) a 6= 0 and b 6= 0; (B) a = 0 and b 6= 0; (C)
a 6= 0 and b = 0. (A) In case of a 6= 0 and b 6= 0, we differentiate both
sides of ax(t) + by(t) + c = 0 so that we obtain ax′(t) + by′(t) = 0. Since
x′(t) = − b

ay
′(t) and since u(t)2 − v(t)2 and 2u(t)v(t) are relatively prime, we

conclude that u(t)2 − v(t)2 and 2u(t)v(t) are constants so that u(t) and v(t)
are constant, i.e., max{deg(u(t)),deg(v(t))} = 0. (B) In case of a = 0 and
b 6= 0, we have w(t)[2u(t)v(t)] = y′(t) = 0. Since w(t) is a monic, either u(t)
or v(t) must be the zero constant function. But from gcd(u(t), v(t)) = 1, we
conclude that the other function must be a nonzero constant function, which
implies that max{deg(u(t)),deg(v(t))} = 0. (C) In case of a 6= 0 and b = 0, by
some similar steps, we conclude that max{deg(u(t)),deg(v(t))} = 0. �

Now we solve the geometric Hermite interpolation problem for PH cubics in
the standard condition:

Theorem 3.2. For given geometric Hermite data pi = (0, 0), pf = (a, 0)
(a > 0), di = (cos θi, sin θi), and df = (cos θf , sin θf ) with −π < θi < 0 and
0 < cos θf < π.

(a) If π
3 ≤ θf − θi − π, then there is no solution;

(b) If −π3 ≤ θf − θi − π <
π
3 , then there is a unique simple solution;

(c) If θf − θi − π < −π3 , then there are two solutions: a simple one and a
non-simple one.

Proof. Let

r(t) = p0(1− t)3 + p13(1− t)2t+ p23(1− t)t2 + p3t
3

be a planar polynomial cubic in the Bernstein-Bézier form such that

r(0) = pi, r(1) = pf ,
r′(0)

‖r′(0)‖
= di,

r′(1)

‖r′(1)‖
= df .

Since

r′(t) = 3(p1 − p0)(1− t)2 + 6(p2 − p1)(1− t)t+ 3(p3 − p2)t2,
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Figure 1. −π < α < −π3

we know that p1 and p2 are below the x. Let Lk = pk−pk−1 for k = 1, 2, 3 be
the direction legs of the Bézier control polygon and Lk = ‖Lk‖ for k = 1, 2, 3.
Let θ1 and θ2 are control-polygon angles at the interior vertices p1 and p2,
respectively. Here we know that the conditions L2

2 = L1 · L3 and θ1 = θ2 are
necessary and sufficient for r(t) to be a Pythagorean-hodograph curve. We
therefore suppose that θ1 = θ2, and set θ = θ1 = θ2.

Suppose that −θi > θf . We set B = L2 and C = L3 when L1 = 0. We now
let L1 be any positive number. Then we obtain

L2 = B + 2L1 cos θ, L3 = C + L1.

Consider the function of L1:

f(L1) = L2
2 − L1L3 = (4 cos2 θ − 1)L2

1 + (4B cos θ − C)L1 +B2.

Let α = θf − θi − π.
Case of −π < α < −π3 . In this case, we have 2π

3 < θ < π so that the leading

coefficient 4 cos2 θ − 1 of the quadratic f(L1) is positive. Since

f(0) = B2 > 0 and f(L) < 0,

where L is the positive number L1 when p1 = p2, f have two positive zeros `1
and `2 with 0 < `1 < L < `2. When L1 = `1, r(t) is a simple PH cubic and
when L1 = `2, r(t) is a non-simple cubic. We clearly see that

`1 =
−β −

√
β2 − 4αB2

2α
and `2 =

−β +
√
β2 − 4αB2

2α
,

where α = 4 cos2 θ − 1 and β = 4B cos θ − C.
Case of α = −π3 . In this case, we have

f(L1) = −
(
B

2
+ C

)
L1 +B2

Therefore, f has the unique positive zero B2/(2B + C). Since f(0) = B2 > 0
and f(L) < 0, we know that B2/(2B + C) < L.
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Figure 2. −π3 ≤ α <
π
3

Case of −π3 < α < π
3 . In this case, we have π

3 < θ < 2π
3 so that the leading

coefficient 4 cos2 θ− 1 of the quadratic f(L1) is negative. Since f(0) = B2 > 0,
f has one positive zero `2. In case of 0 ≤ α <≤ π

3 , then r(t) is clearly a simple

PH cubic. In case of −π3 < α < 0, since f(0) = B2 > 0 and f(L) < 0, we know
that `2 < L so that r(t) is a simple PH cubic. Here we see that

`2 =
−β +

√
β2 − 4αB2

2α
.

Case of α = π
3 . In this case, we have θ = π

3 . Since

4B cos θ − C = 2B − C = B + (B − C) > 0,

f(t) has no positive zero.
Case of π

3 < α < π. In this case, we have 0 < θ < π
3 so that the leading

coefficient 4 cos2 θ − 1 of the quadratic f(L1) is positive. Since

4B cos θ − C > 2B − C = B + (B − C) > 0,

f has no positive zero. �

4. Examples

In this section, we will see several examples for geometric Hermite interpo-
lations.

Let pi = (0, 0) and pf = (1, 0) be the initial and terminal points, respec-
tively. Let di and df be direction vectors at pi and pf , respectively. Let θi and
θf be the angles of di and df with respect to the positive x-axis, respectively.
Here we assume that −π < θi < 0 and 0 < θf < π. Let α = θf − θi − π.
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Figure 3. π
3 ≤ α < π

In case of −π < α < −π3 , we can see two the geometric Hermite interpolants

satisfying the data {pi,pf ,di = ( 2√
5
,− 1√

5
),df = ( 1√

2
,− 1√

2
)} in Figure 1. One

interpolant is simple, but the other is not.
In case of −π3 ≤ α < π

3 , there exists the unique geometric Hermite inter-
polant, which is simple. Figure 2 shows the geometric Hermite interpolants
satisfying the data

{pi,pf ,di = (
1

2
,−
√

3

2
),df = (

1

2
,

√
3

2
)},

{pi,pf ,di = (− 1√
2
,− 1√

2
),df = (

1√
2
,

1√
2

)},

and

{pi,pf ,di = (− 1√
10
,− 3√

10
),df = (− 1√

17
,

4√
17

)}.

In case of π
3 ≤ α < π, there exists no geometric Hermite interpolant satisfy-

ing the data {pi,pf ,di = (− 1√
2
,− 1√

2
),df = (− 2√

5
, 1√

5
)}. See Figure 3.

In Figure 4, the curve 1 and the curve 2 are a piecewise PH cubic and a
quadric Bézier curve, respectively. The bending energy of the piecewise PH
cubic and the quadric Bézier curve are 1.363535924 and 2.332705060, respec-
tively. We can see that the bending energy of PH cubic is lower than that of
the quadric Bézier curve.

Figure 5 shows an offset curve at the distance 0.5 from the curve 1. To obtain
an offset of a polynomial curve, we must go through some approximation step.
But in case of a PH curve, we do not need this step.
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Figure 4. 1: Piecewise PH cubics and 2: quadratic Bézier curves

Figure 5. The offset curve
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