DOI QR코드

DOI QR Code

Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots

수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종

  • Received : 2012.03.27
  • Accepted : 2012.05.07
  • Published : 2012.05.31

Abstract

The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.

Keywords

References

  1. D. Feezor, F. Y. Sorrell, P. R. Blankinship, and J. G. Bellingham, "Autonomous Underwater Vehicle Homing/Docking via Electromagnetic Guidance", IEEE Journal of Oceanic Engineering, vol.26, pp.515-521, Oct. 2001. https://doi.org/10.1109/48.972086
  2. P. Corke, C. Detweiler, M. Dunbabin, M. Hamilton, D. Rus, and I. Vasilescu, "Experiments with Underwater Robot Localization and Tracking", Proc. of International Conf. on Robotics and Automation, pp.4556-4561, Roma, Italy, April 2007.
  3. P. Corke, C. Detweiler, M. Dunbabin, M. Hamilton, D. Rus, and I. Vasilescu, "Autonomous Underwater Vehicle Navigation", IEEE Journal of Oceanic Engineering, vol.35, no.3, pp.663-678, July 2010. https://doi.org/10.1109/JOE.2010.2052691
  4. S. C. Yu, T. Ura, T. Fujii, and H. Kondo, "Navigation of Autonomous Underwater Vehicles based on Articial Underwater Landmarks", Proc. of MTS/IEEE Oceans, vol.1, pp.409-416, Hawaii, USA, Nov. 2001.
  5. J. Sattar and G. Dudek, "Robust Servo-Control for Underwater Robots using Banks of Visual Filters", Proc. of International Conference on Robotics and Automation, pp.3585-3588, Kobe, Japan, May 2009.
  6. G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere, A. German, H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L. Torres, E. Milios, P. Zhang, and I. Rekletis, "A Visually Guided Swimming Robot", Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp.3604-3609, Alberta, Canada, Aug. 2005.
  7. P. M. Lee, B. H. Jeon, and S. M. Kim, "Visual Servoing for Underwater Docking of an Autonomous Underwater Vehicle with One Camera", Proc. of Oceans, vol.2, pp.677-682, San Diego, USA, Sept. 2003.
  8. A. Negre, C. Pradalier, and M. Dunbabin, "Robust Vision-based Underwater Target Identication and Homing Using Self-Similar Landmarks", Journal of Field Robotics, vol.25, pp.360-377, 2008. https://doi.org/10.1002/rob.20246
  9. F. Maire, D. Prasser, M. Dunbabin, and M. Dawson, "A Vision Based Target Detection System for Docking of an Autonomous Underwater Vehicle", Proc. of Australasian Conf. on Robotics and Automation, Sydney, Australia, Dec. 2009.
  10. K. Han and H. Choi, "수중로봇을 위한 형태를 기반으로 하는 인공표식의 인식 및 추종 알고리즘", 전자공학회논문지-SC, 제48권, 제6호, 91-98쪽, 2011년 11월.
  11. J. P. Lewis, "Fast Template Matching", Vision Interface, pp.120-123, Quebec City, Canada, May 1995.
  12. D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis", IEEE Trans. Pattern Anal. and Machine Intell., vol.24, no.5, May 2002.
  13. K. Han and H. Choi, "지능형 수중로봇의 연구 동향과 수중 영상처리 소개", 전자공학회지, 제38권, 제7호, 37-41쪽, 2011년 7월.
  14. Z. Zhang, "A Flexible New Technique for Camera Calibration", IEEE Trans. on Pattern Anal. and Machine Intell, vol.22, pp.1330-1334, Nov. 2000. https://doi.org/10.1109/34.888718
  15. D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", International Journal on Computer Vision, vol.60, no.2, pp.91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  16. H. Bay, T. Tuytelaars, and L. Van Gool, "SURF: Speeded Up Robust Features", European Conf. on Computer Vision, vol.3951, pp.404-417, Graz, Austria, 2006.
  17. D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-Based Object Tracking", IEEE Trans. Pattern Anal. and Machine Intell., vol.25, no.5, pp. 564-577, May 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  18. Video of Vision-based Underwater Navigation, http://urobotserver.kaist.ac.kr/visionnav.html

Cited by

  1. UUV의 DVL 항법을 위한 자세 추정 방법 비교 vol.9, pp.4, 2014, https://doi.org/10.7746/jkros.2014.9.4.216