DOI QR코드

DOI QR Code

The Compensation Algorithm for Localization Using the Least-Squares Method in NLOS Environment

NLOS환경에서의 최소자승법을 적용한 위치인식 보정 알고리즘

  • 정무경 (동명대학교 컴퓨터공학과 모바일기술연구실) ;
  • 최창용 (동명대학교 컴퓨터공학과 모바일기술연구실) ;
  • 이동명 (동명대학교 컴퓨터공학과)
  • Received : 2011.10.18
  • Accepted : 2012.03.20
  • Published : 2012.04.30

Abstract

The compensation algorithm for localization using the least-squires method in NLOS(Non Line of Sight) environment is suggested and the performance of the algorithm is analyzed in this paper. In order to improve the localization correction rate of the moving node, 1) the distance value of the moving node that is moving as an constant speed is measured by SDS-TWR(Symmetric Double-Sided Two-Way Ranging); 2) the location of the moving node is measured using the triangulation scheme; 3) the location of the moving node measured in 2) is compensated using the least-squares method. By the experiments in NLOS environment, it is confirmed that the average localization error rates are measured to ${\pm}1m$, ${\pm}0.2m$ and ${\pm}0.1m$ by the triangulation scheme, the Kalman filter and the least-squires method respectively. As a result, we can see that the localization error rate of the suggested algorithm is higher than that of the triangulation as average 86.0% and the Kalman filter as average 16.0% respectively.

본 논문에서는 WPAN의 NLOS(Non Line of Sight)환경에서 최소자승법을 적용한 위치인식 보정 알고리즘을 제안하고, 성능을 분석하였다. 이동 중인 이동노드의 위치인식 정확도를 향상시키기 위해 먼저 일정한 속도로 이동 중인 이동노드의 거리 값들을 SDS-TWR(Symmetric Double-Sided Two-Way Ranging)로 측정 한 후 이들을 사용하여 삼각 측량법(Triangulation)으로 위치를 측정하고, 그다음 최소자승법을 적용하여 위치인식 값을 보정하였다. NLOS환경에서 실험한 결과, 삼변 측량법, 칼만필터 및 최소자승법을 적용한 경우의 위치인식 평균오차는 ${\pm}1m$, ${\pm}0.2m$, ${\pm}0.1m$로 측정됨을 확인하였다. 결론적으로 제안한 최소자승법을 적용한 위치인식 보정 알고리즘의 위치인식 정확도는 삼각측량법에 의한 위치인식 정확도 보다 평균 86.0%, 칼만필터에 의한 위치인식 정확도 보다 평균 16.0% 향상된 것이다.

Keywords

References

  1. M. Weiser, " The Co,putwr for the 21th Centry," in IEEE Pervasive Computing Magazine, Mar. 2002.
  2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "Wireless Sensor NetWorks: A Survey," in Elsevier Computer Network, 2002.
  3. Hak Yong Kim, Sung Duck Kim, "The Technology Trends of Localization," NIPA, Vol.1322, pp.1-12, November. 2007.
  4. IEEE 802.15.4a, "Part 15.4 : Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Row-rate Wireless Personal Area Network (LR-WPANs)," draft P802.15.4a/D7, Jan. 2007.
  5. Joongjin Kook, Seungok Lim, Jiman Hong, "The Differential Ranging Schemes for the Precise Location Awareness Systems," KIISE, Vol.35, No.2(D), pp.196-199, October. 2008.
  6. Yi Jiang and Victor C.M. Leung, "An Asymmetric Double Sided Two-Way Ranging for Crystal Offset," ISSSE '07, pp.525-528, Aug. 2007.
  7. Seong Ki Kwon, Ho Cheol Lee, Dong Myung Lee, "Performance Comparison of CSS based TWR and SDS-TWR Mechanism for Precise Location Recognition," KICS, Vol.39, pp.888, June. 2009.
  8. G. Welch and G. Bishop, "An Introduction to the Kalman Filter," UNC-Chapel Hill TR 95-041, July 2006.
  9. Y. Qi, H. Kobayashi, and H. Suda, "On Time-of-arrival Positioning in a Multipath Environment," IEEE Trans. on Vehicular Technology, pp. 1516-1526, 2006.
  10. Hanback Electronics, HBE-Ubi-nanoLOC Ubiquitous Sensor Network, 2009.
  11. G. Welch and G. Bishop, "An Introduction to the Kalman Filter," UNC-Chapel Hill TR 95-041, July 2006.
  12. Seong Ki Kwon, "Compensation Algorithm for Localization based on Equivalent Distance Rate and Kalman Filter," M.S. Thesis, Dept. of Computer Media Engineering, The Graduate School in Tongmyong University, February 2011.

Cited by

  1. Localization of Sound Sources in Underground Parking Lots vol.10, pp.4, 2014, https://doi.org/10.1155/2014/826750
  2. Location Recognition Method based on PTP Communication vol.14, pp.3, 2014, https://doi.org/10.5392/JKCA.2014.14.03.033