DOI QR코드

DOI QR Code

광주 치평동 유적 출토 철기시대 토기의 제작특성과 매장환경 연구

Production Characteristics and Post-depositional Influence of Iron Age Pottery from Chipyeongdong Site in Gwangju, Korea

  • 장성윤 (국립문화재연구소 복원기술연구실) ;
  • 문은정 (공주대학교 문화재보존과학과) ;
  • 이찬희 (공주대학교 문화재보존과학과) ;
  • 이기길 (조선대학교 사학과)
  • Jang, Sung-Yoon (Restoration Technology Division, National Research Institute of Cultural Heritage) ;
  • Moon, Eun-Jung (Department of Cultural Heritage Conservation Sciences, Kongju National University) ;
  • Lee, Chan-Hee (Department of Cultural Heritage Conservation Sciences, Kongju National University) ;
  • Lee, Gi-Gil (Department of History, Chosun University)
  • 투고 : 2012.03.26
  • 심사 : 2012.04.17
  • 발행 : 2012.04.28

초록

이 연구에서는 광주 치평동 유적에서 출토된 토기의 태토산지와 소성온도를 광물학적 및 지구화학적 연구방법으로 해석하고 매장환경 하에서 토기의 변질을 조사하였다. 토기와 토양시료는 유사한 광물조성과 지구화학적 진화경향을 갖는 것으로 보아 재료로서의 유사성이 인정되며 토기는 유적의 인근 지역 토양을 이용하여 제작된 것으로 해석된다. 광물학적 분석결과를 근거로, 토기는 크게 $1,000{\sim}1,100^{\circ}C$에서 고온 소성된 그룹과 $700{\sim}1,000^{\circ}C$에서 저온 소성된 그룹으로 나눌 수 있다. 또한 고온 소성된 시료에서는 거정질 입자를 제거하는 수비과정을 거쳤을 것으로 보이는데 저온 소성된 시료들과는 다른 시기 또는 용도의 차이를 보이는 것으로 판단된다. 저온 소성된 토기에서 매장환경 동안 P이 토기 내 Al, Fe 등과 반응하여 비결정질의 침전물을 형성하는 것이 관찰되었으며, 이는 환경에 의한 토기의 변질 현상으로 해석된다.

This study aimed to interpret the provenance and firing temperature of pottery from Chipyeongdong site in Gwangju, Korea though mineralogical and geochemical methods and also investigated the post-depositional alteration of pottery in burial environments. It is also presumed that they were made of soils near the site because they have similar mineralogical composition and same geochemical evolution path. Based on the results of mineralogical analysis, the pottery samples are largely divided into 2 groups; $700^{\circ}C$ to $1,000^{\circ}C$ and 1,000 to $1,100^{\circ}C$. At some pottery fired at over $1,000^{\circ}C$, it is thought that the refinement of raw materials were processed to remove macrocrystalline fragments. However, it was found that phosphate in soil environments formed amorphous aggregates with Al and Fe within the pores and voids on pottery fired at the low temperature. It indicates the contamination of pottery after burial.

키워드

참고문헌

  1. Brandy, N.C. and Weil, R.R. (1999) The nature and properties of soil. Prentice Hall Inc., p.555-565.
  2. Choi. M.L., Kang, H.T. and Shin, S.J. (1994) Scientific analysis on the pottery unearthed at Misa-ri(II). Journal of Archaeological and Historical Studies, vol.8, The museum if Dong-A University.
  3. Choi, M.L. and Shin, S.J. (1998) Pottery analysis, In Choi.(ed.) Archaeological methods. Seoul National University Press.
  4. Freestone, I.C., Meeks, N.D. and Middleton, A.P. (1985) Retention of phosphate in buried ceramics: An electron microbeam approach. Archaeometry, v.27, p.161-177 https://doi.org/10.1111/j.1475-4754.1985.tb00359.x
  5. Hong, S.H. and Yoon, W. (1986) Geologic report of Songjeong, Korea Institute of Energy and Resources. p.4-8.
  6. Jackson, M. (1969) Soil chemical analysis -advanced course. Department of Soils, University of Wisconsin.
  7. Jang, S., Lee, G., Moon, H. and Lee, C.H. (2009) Interpretation of material provenance and production techniques of pottery and kilns from Gundong and Majeon sites in the 3rd Century at Yeonggwang, Korea. Journal of Conservation Science. v.25-1, p.101-114.
  8. Kang, H.T. (1990) Classification of archaeological samples by pattern recognition methods. Korean Ancient Historical Society, v.3.
  9. Kim, G.B., Lee, B.J. and Hwang, S.G. (1990) Geologic report of Gwangju, Korea Institute of Energy and Resources. p.8-15.
  10. Kim, R.H., Cho, M.S., Yeon, W., Seo, J.S. and Lee, C.H. (2010) Interpretation of material homogenity and making techniques of the jar coffins from the Oryangdong kiln site and the Ungokdong tomb site in Naju, Korea. Journal of Conservation Science, v.26(3), p.229-245.
  11. Kim, Y.O. (1976) A study of iron age pottery in Korea. Baeksan Hakbo, v.20.
  12. Lee, G.G. and Lee, M.W. (1990) Provenance study of pottery of neolithic and bronze age. Journal of the Korean Archaeological Society, v.25, p.23-46.
  13. Lee, S., Kim Y. and Moon, H. (1998) An investigation of the transformation sequence from kaolinite to mullite. J. Miner. Soc. Korea, v.11, p.32-44.
  14. Maggetti, M. (1982) Phase analysis and its significance for technology and origin. In Archaeological ceramics. Edited by Olin, J. S. and Franklin, J. D., Smithonian Institution Press, p.121-133.
  15. Maritan, L., Angelini, I. and Artioli, G. (2009) Secondary phosphates in the ceramic materials from Frattesina. Journal of Cultural Heritage. v.10, p.144-151. https://doi.org/10.1016/j.culher.2008.01.008
  16. Maritan L. and Mazzoli, C. (2004) Phosphate in archaeological finds; Implications for environmental conditions of burial. Archaeometry, v.46, p.673-683. https://doi.org/10.1111/j.1475-4754.2004.00182.x
  17. Maritan, L., Mazzoli, C., Nodari, L. and Russo, U. (2005) Second iron age grey pottery from Este (northeastern Italy): study of provenance and technology. Applied Clay Science, v.29, p.31-44. https://doi.org/10.1016/j.clay.2004.09.003
  18. Maritan L., Nodari, L., Mazzoli, C., Milano, A. and Russo, U. (2006) Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, v.31, p.1-15. https://doi.org/10.1016/j.clay.2005.08.007
  19. Masucci, M. and Macfarlane, A. (1997) An application of geological survey and ceramic petrology to provenance studies of Guangala phase ceramics of ancient Ecuador. Geoarchaeology, v.12, p.765-793. https://doi.org/10.1002/(SICI)1520-6548(199710)12:7<765::AID-GEA2>3.0.CO;2-5
  20. Mommsen, H. (2001) Provenance determination of pottery by trace element analysis; problems, solutions and applications. Journal of Radioanalytical and Nuclear Chemistry, v.247, p.657-662. https://doi.org/10.1023/A:1010675720262
  21. Moon, H. (1995) Clay mineralogy. Minumsa.
  22. Moon, H. and Lee, G. (1996) Analysis of raw materials and firing temperature of roof tiles, bricks and pottery from Joseon Dynasty Era. Journal of the Korean Archaeological Society, v.34, p.161-194.
  23. Moon, H., Lee, D. and Lee, G. (1999) Analysis of raw materials and firing temperature from Ttukme site, Gwangju. Journal of the Korean Ancient Historical Society, v.30, p.7-26.
  24. Nockolds, S.R. (1954) Average chemical compositions of some igneous rocks. Geological Society of American Bulletin, v.65, p.1007-1032. https://doi.org/10.1130/0016-7606(1954)65[1007:ACCOSI]2.0.CO;2
  25. Park, Y., Noh, Y. and Lee, C. (1995) Rb-Sr Isotopic study of granitoid rocks in the Gwangju-Naju area, Korea. Journal of Korean Earth Science Society, v.16-3, p.247-261.
  26. Rice, P. M. (1987) Pottery analysis. The University of Chicago Press, p.80-109.
  27. Secco, M., Maritan, L., Mazzoli, C., Lampronti, G., Zorzi, F., Nodari, L., Russo, U. and Mattioli (2011) Alteration process of pottery in lagoon-like environments. Archaeometry, v.53-4, p.809-829. https://doi.org/10.1111/j.1475-4754.2010.00571.x
  28. White, G. and Dixon, J. (2003) Soil mineralogy laboratory manual. 9th Ed., Department of Crop and Soil Sciences, Texas A&M University.
  29. Wakita, R., Rey, P. and Schmitt, R.A. (1971) Abundances of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples. Proc. 2nd Lunar Sci. Conf. Pergamon Press, Oxford, p.1319-1329.
  30. Yim, Y.J. and Seo, H.J. (1997) Chipyeong site, Gwangju. The Museum of Jeonnam University.Gwangju Metropolitan city.

피인용 문헌

  1. Petrological and Mineralogical Characteristics and Firing Temperature of Pottery in the 5-6th Century from Changnyeong, Gyeongsangnamdo vol.27, pp.2, 2014, https://doi.org/10.9727/jmsk.2014.27.2.63