References
- AIJ. [Fire resistance of structural materials guidebook]. Tokyo (Japan): Architectural Institute of Japan; 2009. p. 150-65. Japanese.
- ACI Committee 363. State-of-the Art Report on High-Strength Concrete. Farmington Hills (MI): American Concrete Institute; 1992;363R-92
- Schneider U. Behaviour of concrete at high temperatures. Deutscher Ausschus fur Stahlbeton. 1982;Heft 337.
- Schneider U, Properties of materials at high temperatures-Concrete, RILEM-Committee 44-PHT. 1985 June.
- CEB. Fire Design of Concrete Structures-in accordance with CEB/FIP Model Code 90 (Final Draft), Comites Euro-International Du Beton: CEB Bulletin D'Information No. 208; 1991 July.
- Comite Europeen de Normalisation (CEN), Eurocode 4: Design of Composite Steel and Concrete Structures. Part 1-2: General Rules-Structural Fire Design, CEN ENV; 1994.
- Comite Europeen de Normalisation (CEN), prENV 1992-1-2: Eurocode 2: Design of concrete structures. Part 1-2: Structural Fire Design, CEN/TC 250/SC 2; 1993.
- Abrams MS. Compressive strength of concrete at temperature to 1600F, America, American concrete Institute SP25;1971.
- Diederichs U, Jumppanen UM, Penttala V. Material properties of high strength concrete at elevated temperatures, transaction, IABSE 13th Congress. Helsinki, Finland. 1988 June;489-494
- Kodur VKR, Sultan MA. Effect of temperature on Thermal properties of high-strength Concrete. Journal of Materials in Civil Engineering, ASCE. 2003;15(2) ;101-7. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
- Cheng FP, Kodur VKR, Wang TC. Stress-strain curves for high strength concrete at elevated temperatures. Journal of Materials in Civil Engineering. 2004;16(1);84-90. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84)
- Hertz KD. Concrete strength for fire safety design, Magazine of Concrete Research. 2005;57(8);445-53. https://doi.org/10.1680/macr.2005.57.8.445
- Hirashima T, Toyoda K, Yamashita H, Tokoyoda M, Uesugi H. Compression tests of high-strength concrete cylinders at elevated temperature, International workshop fib 2007;Nov; University of Coimbra. Coimbra(Portugal): CEB-FIB;2007;39-47.
- Kim GY, Kim YS, Lee TG, Yoon MK. Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Tes. Journal of the Korea Concrete Institute. 2008 Oct;20(5);583-92. https://doi.org/10.4334/JKCI.2008.20.5.583
-
Yamazaki N, Thermal Deformation of concrete in High Temperature(20-700
${^{\circ}C}$ ), Academic lectures of the Conference of Architectural Institute of Japan; 1991 Sep.; Tohoku (Japan). Tokyo (Japan): Architectural Institute of Japan; 1991. p. 1159-60. - Tokoyoda M. An Experimental Study on the transient strain for Concrete with limestone aggregates, International workshop fib 2007; 2007 Nov; University of Coimbra. Coimbra (Portugal): CEB-FIB; 2007. p. 27-34.
- RILEM TC 129-MHT Recommendation : Part 6- Thermal strain, Materials and Structures. 1997. p. 17-21.
- RILEM TC 12-MHT. Compressive strength for service and accident conditions, Materials and Structures. 1995. p. 410-4.
- Matsudo M. Mechanical Properties of High Strength and Non-shrinkage Mortar Which is cooling after Heating. Summaries of technical papers of Annual Meeting Architectural Institute of Japan; 2007 Aug.; Kyushu (Japan). Tokyo (Japan): Architectural Institute of Japan; 2007. p. 19-20.
- KCI. [Fire-proof Properties of Reinforced Concrete]. Seoul (Korea): Korea Concrete Institute; 2005. p. 50-75. Korean.
- Ave T, Ohtsuka T, Kobayashi Y, Michikoshi S. Mechanical Properties of Normal Strength Concrete at High temperature. Collection of dissertations of the Department of Construct of Architectural Institute of Japan. 2007;615;7-13.
- Tanaka H. After Heating Properties of hardened concrete and Rehydration. Tokyu (Japan): Architectural Institute of Japan; 1982. p. 45-8. Cement Technical Report 36.
Cited by
- A Numerical Model of Reinforced Concrete Members Exposed to Fire and After-Cooling Analysis vol.28, pp.1, 2015, https://doi.org/10.7734/COSEIK.2015.28.1.101