DOI QR코드

DOI QR Code

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete

시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향

  • Noh, Sang-Kyun (Department of Building Environment Technology, Korea Conformity Laboratories) ;
  • Han, Cheon-Goo (Department of Architectural Engineering, Cheong-ju University)
  • Received : 2011.12.02
  • Accepted : 2012.02.17
  • Published : 2012.06.20

Abstract

Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

시멘트 입도계수(CFM)란 시멘트의 입자크기 분포를 정수로 표현하는 방법으로서 시멘트의 화학성분이나 광물조성은 변화시키지 않고, 시멘트 분쇄과정의 조정으로 CFM을 변화시킨다면 조강, 중용열 및 저열 등의 다양한 시멘트로의 접근이 가능할 것으로 추측된다. 따라서 본 연구에서는 CFM 변화를 활용한 특수 시멘트의 제조 가능성을 분석하기 위한 기초적 연구로서 CFM이 콘크리트의 기초적 특성에 미치는 영향에 대하여 검토하고자 하였다. 그 결과를 요약하면 굳지 않은 콘크리트의 배합특성으로 CFM이 커질수록 목표 유동성을 확보하기 위해 잔골재율 및 단위수량은 증가시켜 주어야 하고, AE제 및 SP제 사용량은 감소시켜 주어야 했다. 응결시간은 CFM이 커질수록 지연되었고, 압축강도는 초기재령에서는 상대적으로 낮았으나, 후기재령으로 갈수록 압축강도의 차이는 작아져 3년 정도가 되면 동등한 수준의 압축강도가 발현되었다.

Keywords

References

  1. Yasyo A. Cement Material Chemistry. 2nd ed. Tokyo (Japan): Dainippon Tosho Publishing Co.; 1990. p. 21-35.
  2. Architectural Institute of Korea. [Building Materials]. Seoul (Korea): Ki Moon Dang; 2010. Korean.
  3. Han CG, Cha WH, Noh SK. Production of Special Cement for Customer's Demand to Transitional Period. Korea Cement Industrial Association Quarterly Cement. 2008;187:27-35.
  4. Han CG. Practical Guide 100 of Han Cheon-Goo for Ready Mixed Concrete Engineers. Seoul (Korea): Construction Media; 2006. p. 5-6.
  5. Tank RC, Carino NJ. Rate Constant Functions for Strength Development of Concrete. American Concrete Institute Journal Proceedings. 1991;88(1):74-83.
  6. Tank RC. Rate Constant Model for Strength Development of Concrete [dissertation]. New York (NY): Polytechnic University of New York; 1988. p. 56-72.
  7. Rastrup E. Heat of Hydration in Concrete. Magazine of Concrete Research. 1954;6(17):77-92.
  8. Price WH. Factors Influencing Concrete Strength. American Concrete Institute Journal Proceedings. 1951;47(2):417-732.
  9. Kjellsen KO, Detwiler RJ. Later-Age Strength Prediction by a Modified Maturity Model. American Concrete Institute Journal. 1993;90(3):220-7.
  10. Tadashi F. Story of Concrete I, II. Tokyo (Japan): Gihoudou Co.; 1993.