DOI QR코드

DOI QR Code

Effects of Resveratrol and trans-3,5,4'-Trimethoxystilbene on Glutamate-Induced Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells

  • Kim, Dae-Won (Department of Neurosurgery, Wonkwang University School of Medicine) ;
  • Kim, Young-Mi (Department of Microbiology and Immunology, Wonkwang University School of Medicine) ;
  • Kang, Sung-Don (Department of Neurosurgery, Wonkwang University School of Medicine) ;
  • Han, Young-Min (Department of Radiology, Chonbuk National University Hospital & Medical School) ;
  • Pae, Hyun-Ock (Department of Microbiology and Immunology, Wonkwang University School of Medicine)
  • Received : 2012.02.27
  • Accepted : 2012.04.25
  • Published : 2012.05.31

Abstract

Resveratrol (trans-3,5,4'-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4'-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamate-induced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotection afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.

Keywords

References

  1. Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., Colombo, L., Manzoni, C., Salmona, M., Caccia, S., Negro, A. and Forloni, G. (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J. Neurochem. 110, 1445-1456. https://doi.org/10.1111/j.1471-4159.2009.06228.x
  2. Albani, D., Polito, L., Signorini, A. and Forloni, G. (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36, 370-376. https://doi.org/10.1002/biof.118
  3. Alex, D., Leong, E. C., Zhang, Z. J., Yan, G. T., Cheng, S. H., Leong, C. W., Li, Z. H., Lam, K. H., Chan, S. W. and Lee, S. M. (2010) Resveratrol derivative, trans-3,5,4'-trimethoxystilbene, exerts antiangiogenic and vascular-disrupting effects in zebrafi sh through the downregulation of VEGFR2 and cell-cycle modulation. J. Cell Biochem. 109, 339-346.
  4. Bastianetto, S. and Quirion, R. (2010) Heme oxygenase 1: another possible target to explain the neuroprotective action of resveratrol, a multifaceted nutrient-based molecule. Exp. Neurol. 225, 237-239. https://doi.org/10.1016/j.expneurol.2010.06.019
  5. Behl, C. (1998) Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implications for the pathogenesis of Alzheimer's disease. Exp. Gerontol. 33, 689-696. https://doi.org/10.1016/S0531-5565(98)00019-9
  6. Belleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L. A. and Presta, M. (2005) Antiangiogenic and vascular-targeting activity of the microtubule-destabilizing trans-resveratrol derivative 3,5,4'-trimethoxystilbene. Mol. Pharmacol. 67, 1451-1459. https://doi.org/10.1124/mol.104.009043
  7. Borra, M. T., Smith, B. C. and Denu, J. M. (2005) Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195. https://doi.org/10.1074/jbc.M501250200
  8. Chen, C. Y., Jang, J. H., Li, M. H. and Surh, Y. J. (2005) Resveratrol upregulates heme oxygenase-1 expression via activation of NFE2-related factor 2 in PC12 cells. Biochem. Biophys. Res. Commun. 331, 993-1000. https://doi.org/10.1016/j.bbrc.2005.03.237
  9. Chong, Z. Z., Shang, Y. C., Wang, S. and Maiese, K. (2012) SIRT1: new avenues of discovery for disorders of oxidative stress. Expert. Opin. Ther. Targets 16, 167-178. https://doi.org/10.1517/14728222.2012.648926
  10. Darvesh, A. S., Carroll, R. T., Bishayee, A., Geldenhuys, W. J. and Van der Schyf, C. J. (2010) Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert Rev. Neurother. 10, 729-745. https://doi.org/10.1586/ern.10.42
  11. Delmas, D., Solary, E. and Latruffe, N. (2011) Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr. Med. Chem. 18, 1100-1121. https://doi.org/10.2174/092986711795029708
  12. Deng, Y. H., Alex, D., Huang, H. Q., Wang, N., Yu, N., Wang, Y. T., Leung, G. P. and Lee, S. M. (2011) Inhibition of TNF-$\alpha$-mediated endothelial cell-monocyte cell adhesion and adhesion molecules expression by the resveratrol derivative, trans-3,5,4'-trimethoxystil-bene. Phytother. Res. 25, 451-457.
  13. Floyd, R. A. and Hensley, K. (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
  14. Fukui, M., Choi, H. J. and Zhu, B. T. (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic. Biol. Med. 49, 800-813. https://doi.org/10.1016/j.freeradbiomed.2010.06.002
  15. Hall, E. D., Vaishnav, R. A. and Mustafa, A. G. (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7, 51-61. https://doi.org/10.1016/j.nurt.2009.10.021
  16. Hasegawa, K., Wakino, S., Yoshioka, K., Tatematsu, S., Hara, Y., Minakuchi, H., Washida, N., Tokuyama, H., Hayashi, K. and Itoh, H. (2008) Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun. 372, 51-66. https://doi.org/10.1016/j.bbrc.2008.04.176
  17. Hasegawa, K. and Yoshikawa, K. (2008) Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J. Neurosci. 28, 8772-8784. https://doi.org/10.1523/JNEUROSCI.3052-08.2008
  18. Hasiah, A. H., Ghazali, A. R., Weber, J. F., Velu, S., Thomas, N. F. and Inayat Hussain, S. H. (2011) Cytotoxic and antioxidant effects of methoxylated stilbene analogues on HepG2 hepatoma and Chang liver cells: Implications for structure activity relationship. Hum. Exp. Toxicol. 30, 138-144. https://doi.org/10.1177/0960327110368739
  19. Ho, D. J., Calingasan, N. Y., Wille, E., Dumont, M. and Beal, M. F. (2010) Resveratrol protects against peripheral defi cits in a mouse model of Huntington's disease. Exp. Neurol. 225, 74-84. https://doi.org/10.1016/j.expneurol.2010.05.006
  20. Huang, X. and Zhu, H. L. (2011) Resveratrol and its analogues: promising antitumor agents. Anticancer Agents Med. Chem. 11, 479-490. https://doi.org/10.2174/187152011795677427
  21. Jazwa, A. and Cuadrado, A. (2010) Targeting heme oxygenase-1 for neuroprotection and neuroinfl ammation in neurodegenerative diseases. Curr. Drug Targets 11, 1517-1531. https://doi.org/10.2174/1389450111009011517
  22. Jeong, G. S., An, R. B., Pae, H. O., Chung, H. T., Yoon, K. H., Kang, D. G., Lee, H. S. and Kim, Y. C. (2008) Cudratricusxanthone A protects mouse hippocampal cells against glutamate-induced neurotoxicity via the induction of heme oxygenase-1. Planta Med. 74, 1368-1373. https://doi.org/10.1055/s-2008-1081315
  23. Kao, C. L., Chen, L. K., Chang, Y. L., Yung, M. C., Hsu, C. C., Chen, Y. C., Lo, W. L., Chen, S. J., Ku, H. H. and Hwang, S. J. (2010) Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J. Atheroscler. Thromb. 17, 970-979. https://doi.org/10.5551/jat.4333
  24. Kelsey, N. A., Wilkins, H. M. and Linseman, D. A. (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15, 7792-7814. https://doi.org/10.3390/molecules15117792
  25. Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A. and Tsai, L. H. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169-3179. https://doi.org/10.1038/sj.emboj.7601758
  26. Kulawiak, B. and Szewczyk, A. (2012) Glutamate-induced cell death in HT22 mouse hippocampal cells is attenuated by paxilline, a BK channel inhibitor. Mitochondrion. 12, 169-172. https://doi.org/10.1016/j.mito.2011.12.001
  27. Li, F., Gong, Q., Dong, H. and Shi, J. (2012) Resveratrol, a neuroprotective supplement for Alzheimer's disease. Curr. Pharm. Des. 18, 27-33. https://doi.org/10.2174/138161212798919075
  28. Martin, S., Andriambeloson, E., Takeda, K. and Andriantsitohaina, R. (2002) Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br. J. Pharmacol. 135, 1579-1587. https://doi.org/10.1038/sj.bjp.0704603
  29. Ndiaye, M., Chataigneau, M., Lobysheva, I., Chataigneau, T. and Schini-Kerth, V. B. (2005) Red wine polyphenol-induced, endothelium- dependent NO-mediated relaxation is due to the redoxsensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J. 19, 455-457.
  30. Pae, H. O., Kim, E. C. and Chung, H. T. (2008) Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J. Clin. Biochem. Nutr. 42, 197-203. https://doi.org/10.3164/jcbn.2008029
  31. Pae, H. O., Son, Y., Kim, N. H., Jeong, H. J., Chang, K. C. and Chung, H. T. (2010) Role of heme oxygenase in preserving vascular bioactive NO. Nitric Oxide 23, 251-257. https://doi.org/10.1016/j.niox.2010.08.002
  32. Pan, M. H., Gao, J. H., Lai, C. S., Wang, Y. J., Chen, W. M., Lo, C. Y., Wang, M., Dushenkov, S. and Ho, C. T. (2008) Antitumor activity of 3,5,4'-trimethoxystilbene in COLO 205 cells and xenografts in SCID mice. Mol. Carcinog. 47, 184-196. https://doi.org/10.1002/mc.20352
  33. Pocernich, C. B., Lange, M. L., Sultana, R. and Butterfi eld, D. A. (2011) Nutritional approaches to modulate oxidative stress in Alzheimer's disease. Curr. Alzheimer Res. 8, 452-469. https://doi.org/10.2174/156720511796391908
  34. Ren, J., Fan, C., Chen, N., Huang, J. and Yang, Q. (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem. Res. 36, 2352-2362. https://doi.org/10.1007/s11064-011-0561-8
  35. Richard, T., Pawlus, A. D., Iglesias, M. L., Pedrot, E., Waffo-Teguo, P., Merillon, J. M. and Monti, J. P. (2011) Neuroprotective properties of resveratrol and derivatives. Ann. N. Y. Acad. Sci. 1215, 103-108. https://doi.org/10.1111/j.1749-6632.2010.05865.x
  36. Robb, E. L. and Stuart, J. A. (2010) trans-Resveratrol as a neuroprotectant. Molecules 15, 1196-1212. https://doi.org/10.3390/molecules15031196
  37. Shindler, K. S., Ventura, E., Dutt, M., Elliott, P., Fitzgerald, D. C. and Rostami, A. (2010) Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J. Neuroophthalmol. 30, 328-339. https://doi.org/10.1097/WNO.0b013e3181f7f833
  38. Son, Y., Lee, J. H., Kim, N. H., Surh, N. Y., Kim, E. C., Chung, H. T., Kang, D. G. and Pae, H. O. (2010) Dilinoleoylphosphatidylcholine induces the expression of the anti-infl ammatory heme oxygenase-1 in RAW264.7 macrophages. Biofactors 36, 210-215. https://doi.org/10.1002/biof.87
  39. Srivastava, S. and Haigis, M. C. (2011) Role of sirtuins and calorie restriction in neuroprotection: implications in Alzheimer's and Parkinson's diseases. Curr. Pharm. Des. 17, 3418-3433. https://doi.org/10.2174/138161211798072526
  40. Steele, M., Stuchbury, G. and Münch, G. (2007) The molecular basis of the prevention of Alzheimer's disease through healthy nutrition. Exp. Gerontol. 42, 28-36. https://doi.org/10.1016/j.exger.2006.06.002
  41. Sun, A. Y., Wang, Q., Simonyi, A. and Sun, G. Y. (2008) Botanical phenolics and brain health. Neuromolecular Med. 10, 259-274. https://doi.org/10.1007/s12017-008-8052-z
  42. Sun, A. Y., Wang, Q., Simonyi, A. and Sun, G. Y. (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol. 41, 375-383. https://doi.org/10.1007/s12035-010-8111-y
  43. Wang, J., Zhang, Y., Tang, L., Zhang, N. and Fan, D. (2011a) Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci. Lett. 503, 250-255. https://doi.org/10.1016/j.neulet.2011.08.047
  44. Wang, R. H., Kim, H. S., Xiao, C., Xu, X., Gavrilova, O. and Deng, C. X. (2011b) Hepatic Sirt1 defi ciency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121, 4477-4490. https://doi.org/10.1172/JCI46243
  45. Wu, M. L., Ho, Y. C. and Yet, S. F. (2011a) A central role of heme oxygenase-1 in cardiovascular protection. Antioxid. Redox. Signal. 15, 1835-1846. https://doi.org/10.1089/ars.2010.3726
  46. Wu, Y., Li, X., Zhu, J. X., Xie, W., Le, W., Fan, Z., Jankovic, J. and Pan, T. (2011b) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals. 19, 163-174. https://doi.org/10.1159/000328516
  47. Xia, L., Ding, F., Zhu, J. H. and Fu, G. S. (2011) Resveratrol attenuates apoptosis of pulmonary microvascular endothelial cells induced by high shear stress and proinfl ammatory factors. Hum. Cell 24, 127-133. https://doi.org/10.1007/s13577-011-0031-2
  48. Yang, Y. T., Weng, C. J., Ho, C. T. and Yen, G. C. (2009) Resveratrol analog-3,5,4'-trimethoxy-trans-stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol. Nutr. Food. Res. 53, 407-416. https://doi.org/10.1002/mnfr.200800123
  49. Zhang, F., Wang, S., Gan, L., Vosler, P. S., Gao, Y., Zigmond, M. J. and Chen, J. (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol. 95, 373-395. https://doi.org/10.1016/j.pneurobio.2011.09.001

Cited by

  1. Neuroprotective Properties and Mechanisms of Resveratrol inin Vitroandin VivoExperimental Cerebral Stroke Models vol.4, pp.8, 2013, https://doi.org/10.1021/cn400094w
  2. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis vol.19, pp.4, 2015, https://doi.org/10.1517/14728222.2014.989834
  3. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1 vol.2013, 2013, https://doi.org/10.1155/2013/639541
  4. Resveratrol preserves the function of human platelets stored for transfusion vol.172, pp.5, 2016, https://doi.org/10.1111/bjh.13862
  5. Resveratrol derivative BTM-0512 mitigates obesity by promoting beige remodeling of subcutaneous preadipocytes vol.49, pp.4, 2017, https://doi.org/10.1093/abbs/gmx009
  6. AMPK activation prevents prenatal stress-induced cognitive impairment: Modulation of mitochondrial content and oxidative stress vol.75, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.07.029
  7. New Insights for Oxidative Stress and Diabetes Mellitus vol.2015, 2015, https://doi.org/10.1155/2015/875961
  8. 3,4′,5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency vol.33, pp.3, 2015, https://doi.org/10.1007/s10637-015-0222-x
  9. Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells vol.45, pp.2, 2013, https://doi.org/10.1007/s00726-013-1518-9
  10. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00116
  11. Betulin Protects HT-22 Hippocampal Cells against ER Stress through Induction of Heme Oxygenase-1 and Inhibition of ROS Production vol.14, pp.12, 2012, https://doi.org/10.1177/1934578x19896684
  12. Resveratrol Derivatives as Potential Treatments for Alzheimer’s and Parkinson’s Disease vol.12, pp.None, 2012, https://doi.org/10.3389/fnagi.2020.00103
  13. Antioxidative Stress Mechanisms behind Resveratrol: A Multidimensional Analysis vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5571733
  14. Anti-Apoptotic and Anti-Inflammatory Role of Trans ε-Viniferin in a Neuron–Glia Co-Culture Cellular Model of Parkinson’s Disease vol.10, pp.3, 2012, https://doi.org/10.3390/foods10030586
  15. P.0408 Blood SIRT1 and BDNF dynamics in clinical trial of antidepressant action of resveratrol vol.53, pp.suppl1, 2012, https://doi.org/10.1016/j.euroneuro.2021.10.381