DOI QR코드

DOI QR Code

Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells

  • Lee, Kyung-Ae (Department of Biochemistry, College of Medicine, Soonchunhyang University) ;
  • Lee, Sang-Han (Department of Biochemistry, College of Medicine, Soonchunhyang University) ;
  • Lee, Yong-Jin (Soonchunhyung Environmental Health Center for Asbestos-Related Disease, College of Medicine, Soonchunhyang University Cheonan Hospital) ;
  • Baeg, Seung-Mi (Department of Biochemistry, College of Medicine, Soonchunhyang University) ;
  • Shim, Jung-Hyun (Department of Biochemistry, College of Medicine, Soonchunhyang University)
  • 투고 : 2012.02.07
  • 심사 : 2012.04.10
  • 발행 : 2012.05.31

초록

Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The $IC_{50}$ value of hesperidin was determined to be 152.3 ${\mu}M$ in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 ${\mu}M$) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-$G_1$ population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-$_{xl}$ in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma.

키워드

참고문헌

  1. Akiyama, S., Katsumata, S., Suzuki, K., Ishimi, Y., Wu, J. and Uehara, M. (2010) Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J. Clin. Biochem. Nutr. 46, 87-92.
  2. Ameer, B., Weintraub, R. A., Johnson, J. V., Yost, R. A. and Rouseff, R. L. (1996) Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60, 34-40. https://doi.org/10.1016/S0009-9236(96)90164-2
  3. Carbone, M., Kratzke, R. A. and Testa, J. R. (2002) The pathogenesis of mesothelioma. Semin. Oncol. 29, 2-17. https://doi.org/10.1016/S0093-7754(02)70081-X
  4. Choi, E. J. (2007) Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr. Cancer 59, 115-119. https://doi.org/10.1080/01635580701419030
  5. Chuang, J. Y., Wu, C. H., Lai, M. D., Chang, W. C. and Hung, J. J. (2009) Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int. J. Cancer 125, 2066-2076. https://doi.org/10.1002/ijc.24563
  6. Davie, J. R., He, S., Li, L., Sekhavat, A., Espino, P., Drobic, B., Dunn, K. L., Sun, J. M., Chen, H. Y., Yu, J., Pritchard, S. and Wang, X. (2008) Nuclear organization and chromatin dynamics--Sp1, Sp3 and histone deacetylases. Adv. Enzyme Regul. 48, 189-208. https://doi.org/10.1016/j.advenzreg.2007.11.016
  7. Dimmock, J. R., Elias, D. W., Beazely, M. A. and Kandepu, N. M. (1999) Bioactivities of chalcones. Curr. Med. Chem. 6, 1125-1149.
  8. Fresco, P., Borges, F., Diniz, C. and Marques, M. P. (2006) New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 26, 747-766. https://doi.org/10.1002/med.20060
  9. Fresco, P., Borges, F., Marques, M. P. and Diniz, C. (2010) The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr. Pharm. Des. 16, 114-134. https://doi.org/10.2174/138161210789941856
  10. Garg, A., Garg, S., Zaneveld, L. J. and Singla, A. K. (2001) Chemistry and pharmacology of the Citrus biofl avonoid hesperidin. Phytother. Res. 15, 655-669. https://doi.org/10.1002/ptr.1074
  11. Ghorbani, A., Nazari, M., Jeddi-Tehrani, M. and Zand, H. (2012) The citrus flavonoid hesperidin induces p53 and inhibits NF-${\kappa}B$ activation in order to trigger apoptosis in NALM-6 cells: involvement of PPAR$\gamma$-dependent mechanism. Eur. J. Nutr. 51, 39-46.
  12. Horvathova, K., Vachalkova, A. and Novotny, L. (2001) Flavonoids as chemoprotective agents in civilization diseases. Neoplasma 48, 435-441.
  13. Howells, L. M., Britton, R. G., Mazzoletti, M., Greaves, P., Broggini, M., Brown, K., Steward, W. P., Gescher, A. J. and Sale, S. (2010) Preclinical colorectal cancer chemopreventive effi cacy and p53-modulating activity of 3',4',5'-trimethoxyfl avonol, a quercetin analogue. Cancer Prev. Res (Phila). 3, 929-939. https://doi.org/10.1158/1940-6207.CAPR-09-0236
  14. Justesen, U., Knuthsen, P. and Leth, T. (1998) Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chromatogr. A 799, 101-110. https://doi.org/10.1016/S0021-9673(97)01061-3
  15. Kamaraj, S., Anandakumar, P., Jagan, S., Ramakrishnan, G. and Devaki, T. (2011) Hesperidin attenuates mitochondrial dysfunction during benzo(a)pyrene-induced lung carcinogenesis in mice. Fundam. Clin. Pharmacol. 25, 91-98. https://doi.org/10.1111/j.1472-8206.2010.00812.x
  16. Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H., Hashiguchi, M., Tsujiko, K., Matsumoto, S., Ishiguro, H. and Chiba, T. (2011) Doseescalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 69, 65-70.
  17. Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovaara, M., Reunanen, A., Hakulinen, T. and Aromaa, A. (2002) Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76, 560-568.
  18. Kong, L. M., Liao, C. G., Fei, F., Guo, X., Xing, J. L. and Chen, Z. N. (2010) Transcription factor Sp1 regulates expression of cancerassociated molecule CD147 in human lung cancer. Cancer Sci. 101, 1463-1470. https://doi.org/10.1111/j.1349-7006.2010.01554.x
  19. la Porte, C., Voduc, N., Zhang, G., Seguin, I., Tardiff, D., Singhal, N. and Cameron, D. W. (2010) Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin. Pharmacokinet. 49, 449-454. https://doi.org/10.2165/11531820-000000000-00000
  20. Lee, K. H., Yeh, M. H., Kao, S. T., Hung, C. M., Liu, C. J., Huang, Y. Y. and Yeh, C. C. (2010) The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappaB in human hepatocellular carcinoma cells. Toxicol. Lett. 194, 42-49. https://doi.org/10.1016/j.toxlet.2010.01.021
  21. Lee, Y. R., Jung, J. H. and Kim, H. S. (2011) Hesperidin partially restores impaired immune and nutritional function in irradiated mice. J. Med. Food 14, 475-482. https://doi.org/10.1089/jmf.2010.1269
  22. Li, L. and Davie, J. R. (2010) The role of Sp1 and Sp3 in normal and cancer cell biology. Ann. Anat. 192, 275-283. https://doi.org/10.1016/j.aanat.2010.07.010
  23. Li, Y., Fang, H. and Xu, W. (2007) Recent advance in the research of flavonoids as anticancer agents. Mini. Rev. Med. Chem. 7, 663-678. https://doi.org/10.2174/138955707781024463
  24. Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. (2009) Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241.
  25. Nielsen, S. E., Freese, R., Kleemola, P. and Mutanen, M. (2002) Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol. Biomarkers. Prev. 11, 459-466.
  26. Park, H. J., Kim, M. J., Ha, E. and Chung, J. H. (2008) Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine 15, 147-151. https://doi.org/10.1016/j.phymed.2007.07.061
  27. Preston, R. K., Avakian, S., Beiler, J. M., Moss, J. N. and Martin, G. J. (1953) In vivo and in vitro inhibition of hyaluronidase by organic phosphates. Exp. Med. Surg. 11, 1-8.
  28. Raja, S., Murthy, S. C. and Mason, D. P. (2011) Malignant pleural mesothelioma. Curr. Oncol. Rep. 13, 259-264. https://doi.org/10.1007/s11912-011-0177-9
  29. Ramos, S. (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 52, 507-526. https://doi.org/10.1002/mnfr.200700326
  30. Ren, W., Qiao, Z., Wang, H., Zhu, L. and Zhang, L. (2003) Flavonoids: promising anticancer agents. Med. Res. Rev. 23, 519-534. https://doi.org/10.1002/med.10033
  31. Robinson, B. W. and Lake, R. A. (2005) Advances in malignant mesothelioma. N. Engl. J. Med. 353, 1591-1603. https://doi.org/10.1056/NEJMra050152
  32. Safe, S. and Abdelrahim, M. (2005) Sp transcription factor family and its role in cancer. Eur. J. Cancer 41, 2438-2448. https://doi.org/10.1016/j.ejca.2005.08.006
  33. Sankpal, U. T., Goodison, S., Abdelrahim, M. and Basha, R. (2011) Targeting Sp1 transcription factors in prostate cancer therapy. Med. Chem. 7, 518-525. https://doi.org/10.2174/157340611796799203
  34. Shanafelt, T. D., Call, T. G., Zent, C. S., LaPlant, B., Bowen, D. A., Roos, M., Secreto, C. R., Ghosh, A. K., Kabat, B. F., Lee, M. J., Yang, C. S., Jelinek D. F., Erlichman, C. and Kay, N. E. (2009) Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J. Clin. Oncol. 27, 3808-3814. https://doi.org/10.1200/JCO.2008.21.1284
  35. Takigawa, N., Kiura, K. and Kishimoto, T. (2011) Medical treatment of mesothelioma: anything new? Curr. Oncol. Rep. 13, 265-271. https://doi.org/10.1007/s11912-011-0172-1
  36. Tanaka, T., Makita, H., Kawabata, K., Mori, H., Kakumoto, M., Satoh, K., Hara, A., Sumida, T., Tanaka, T. and Ogawa, H. (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis 18, 957-965. https://doi.org/10.1093/carcin/18.5.957
  37. Tsuda, H., Ohshima, Y., Nomoto, H., Fujita, K., Matsuda, E., Iigo, M., Takasuka, N. and Moore, M. A. (2004) Cancer prevention by natural compounds. Drug Metab. Pharmacokinet. 19, 245-263. https://doi.org/10.2133/dmpk.19.245
  38. Yang, M., Tanaka, T., Hirose, Y., Deguchi, T., Mori, H. and Kawada, Y. (1997) Chemopreventive effects of diosmin and hesperidin on Nbutyl- N-(4-hydroxybutyl)nitrosamine-induced urinary-bladder carcinogenesis in male ICR mice. Int. J. Cancer 73, 719-724. https://doi.org/10.1002/(SICI)1097-0215(19971127)73:5<719::AID-IJC18>3.0.CO;2-0
  39. Yeh, M. H., Kao, S. T., Hung, C. M., Liu, C. J., Lee, K. H. and Yeh, C. C. (2009) Hesperidin inhibited acetaldehyde-induced matrix metalloproteinase- 9 gene expression in human hepatocellular carcinoma cells. Toxicol. Lett. 184, 204-210. https://doi.org/10.1016/j.toxlet.2008.11.018
  40. Zucali, P. A., Ceresoli, G. L., De Vincenzo, F., Simonelli, M., Lorenzi, E., Gianoncelli, L. and Santoro, A. (2011) Advances in the biology of malignant pleural mesothelioma. Cancer Treat. Rev. 37, 543-558. https://doi.org/10.1016/j.ctrv.2011.01.001

피인용 문헌

  1. Hesperidin: A promising anticancer agent from nature vol.76, 2015, https://doi.org/10.1016/j.indcrop.2015.07.051
  2. Health-promoting effects of the citrus flavanone hesperidin vol.57, pp.3, 2017, https://doi.org/10.1080/10408398.2014.906382
  3. Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury vol.91, pp.11, 2013, https://doi.org/10.1007/s00109-013-1070-9
  4. Anti-cancer and Anti-inflammatory Properties of Korean Citrus Fruits (Citrus aurantium L.) vol.2, pp.1, 2014, https://doi.org/10.15205/kschs.2014.2.1.73
  5. Mitochondrial Dysfunction and Ca2+Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2 vol.231, pp.6, 2016, https://doi.org/10.1002/jcp.25222
  6. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma vol.45, pp.2, 2014, https://doi.org/10.3892/ijo.2014.2461
  7. Hesperidin Induces Paraptosis Like Cell Death in Hepatoblatoma, HepG2 Cells: Involvement of ERK1/2 MAPK vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0101321
  8. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases vol.124, 2015, https://doi.org/10.1016/j.lfs.2014.12.030
  9. The Potential Protective Effects of Polyphenols in Asbestos-Mediated Inflammation and Carcinogenesis of Mesothelium vol.8, pp.5, 2016, https://doi.org/10.3390/nu8050275
  10. Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2018.1559175
  11. Radiosensitizing Efficacy of Diosmin- Hesperidin Complex Against Ehrlich Solid Carcinoma in Mice, A Potential Role of Histone Deacetylase and Pro-angiogenic Chaperones Targeting vol.13, pp.2, 2017, https://doi.org/10.3923/ijcr.2017.59.70
  12. Novel Lipidized Derivatives of the Bioflavonoid Hesperidin: Dermatological, Cosmetic and Chemopreventive Applications vol.5, pp.4, 2012, https://doi.org/10.3390/cosmetics5040072
  13. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements vol.245, pp.5, 2012, https://doi.org/10.1177/1535370220903671
  14. The protective effect of hesperidin against renal ischemia-reperfusion injury involves the TLR-4/NF-κB/iNOS pathway in rats vol.107, pp.1, 2012, https://doi.org/10.1556/2060.2020.00003
  15. The protective effect of hesperidin against renal ischemia-reperfusion injury involves the TLR-4/NF-κB/iNOS pathway in rats vol.107, pp.1, 2012, https://doi.org/10.1556/2060.2020.00003
  16. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models vol.73, pp.None, 2012, https://doi.org/10.1016/j.phymed.2019.152887
  17. Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies vol.74, pp.11, 2012, https://doi.org/10.1007/s11696-020-01216-z
  18. Phytochemicals in Malignant Pleural Mesothelioma Treatment-Review on the Current Trends of Therapies vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158279