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GENERAL LAWS OF PRECISE ASYMPTOTICS FOR SUMS

OF RANDOM VARIABLES

Yan-Jiao Meng

Abstract. In this paper, we obtain two general laws of precise asymp-
totics for sums of i.i.d random variables, which contain general weighted
functions and boundary functions and also clearly show the relationship

between the weighted functions and the boundary functions. As corollar-
ies, we obtain Theorem 2 of Gut and Spǎtaru [A. Gut and A. Spǎtaru,
Precise asymptotics in the law of the iterated logarithm, Ann. Probab.

28 (2000), no. 4, 1870–1883] and Theorem 3 of Gut and Spǎtaru [A. Gut
and A. Spǎtaru, Precise asymptotics in the Baum-Katz and Davids laws
of large numbers, J. Math. Anal. Appl. 248 (2000), 233–246].

1. Introduction and main results

Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables and Sn =∑n
k=1 Xk, n ≥ 1. Let φ(x) and f(x) be positive functions defined on [n0, ∞),

n0 ∈ Z+, and
∑∞

n=n0
φ(n) = ∞, f(x) ↑ ∞, x → ∞. Set

P (φ, f, ϵ) =
∞∑

n=n0

φ(n)P{|Sn| ≥ ϵf(n)},

φ(x) and f(x) are called weighted function and boundary function, respectively.
Since Hsu and Robbins [10] introduced the concept of complete convergence,

there has been research in two directions. One is to discuss the moment con-
ditions, from which it follows that P (φ, f, ϵ) < ∞, ϵ > 0. For results of such
aspect, one can refer to Hsu and Robbins [10], Erdös [4, 5] and Baum and Katz
[1], etc. They, respectively, studied the cases in which φ(n) = 1, f(n) = n and
φ(n) = nr/p−2, f(n) = n1/p, where 0 < p < 2, r ≥ p.

Another aspect of research concerns about the convergence rate and limit
value of P (φ, f, ϵ) as ϵ ↘ a, a ≥ 0. The first result in this direction was Heyde
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[9], which proved that

lim
ϵ↘0

ϵ2
∞∑

n=1

P{|Sn| ≥ ϵn} = EX2,

whenever EX = 0 and EX2 < ∞. For more analogous results, please refer
to [7], [8], [11], [12], [14], etc, which are all on specific weighted functions and
boundary functions. Such research of this field is called the precise asymp-
totics. In this field, people are prone to concern about more general weighted
functions and boundary functions, and study the relationship between them.
Some scholars have done research in this area, please refer to [3], [16], [17], etc.
In this paper, we also obtain two general laws of precise asymptotics for sums of
i.i.d random variables, which contain general weighted functions and boundary
functions and also clearly show the relationship between the weighted functions
and the boundary functions.

Below, let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables with
common distribution function F , mean 0 and positive, finite variance σ2. And
let N be the standard normal random variable. C denotes positive constant,
possibly varying from place to place, and [x] denotes the largest integer ≤ x.
The notion an ∼ bn means that an/bn → 1 as n → ∞.

Theorem 1.1. Suppose h(x) is a positive and differentiable function defined
on [n0,∞), which is strictly increasing to ∞ and n0 ∈ Z+. Assume that the
following conditions are satisfied:

(a) there exists n1 ≥ n0 such that hδ(x)h′(x) is monotone nonincreasing
on [n1,∞), where 0 ≤ δ < 1;

(b) lim
x→∞

h(x−1)
h(x) = 1;

(c) xh′(x) is monotone nonincreasing.

Then

(1.1) lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P{|Sn| ≥ ϵ
√

nh(n)} =
1

δ + 1
E|N |2δ+2σ2δ+2.

Setting h(x) = log log x, we can get the following result.

Corollary 1.1.
(1.2)

lim
ϵ↘0

ϵ2δ+2
∑
n≥3

(log log n)δ

n log n
P{|Sn| ≥ ϵ

√
n log log n} =

1

δ + 1
E|N |2δ+2σ2δ+2.

Remark 1.1. Letting δ = 0, (1.2) is Theorem 2 of Gut and Spǎtaru [7].

If we set h(x) = log x, we can get Theorem 3 of Gut and Spǎtaru [8] as
follow.
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Corollary 1.2.

(1.3) lim
ϵ↘0

ϵ2δ+2
∑
n≥3

(log n)δ

n
P{|Sn| ≥ ϵ

√
n log n} =

1

δ + 1
E|N |2δ+2σ2δ+2.

Theorem 1.2. Under the conditions of Theorem 1.1, setting

Qn = max
1≤k≤n

|Sk|,

we have

lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P{Qn ≥ ϵ
√

nh(n)}

=
2

δ + 1
E|N |2δ+2σ2δ+2

∞∑
k=0

(−1)k

(2k + 1)2δ+2
.

(1.4)

2. Some lemmas

To prove the main results, the following lemmas are needed.

Lemma 2.1 ([15], Stout, p. 120). Let {ani} be a matrix of real numbers and
{xi} be a sequence of real numbers satisfying xi → 0 as i → ∞. Then

∞∑
i=1

|ani| ≤ M < ∞ for all n ≥ 1

and

ani → 0 as n → ∞ for each i ≥ 1

imply that
∞∑
i=1

anixi → 0 as n → ∞.

The following lemma we need is [14, Lemma 2] which is based on an inequal-
ity by Fuk and Nagaev [6].

Lemma 2.2. Assume that E|X|β < ∞, where 1 < β ≤ 2. For x, y > 0, we
have

P (|Sn| ≥ x) ≤ nP (|X| ≥ y) + 2ex/y
( nE|X|β

nE|X|β + xyβ−1

)x/y
≤ nP (|X| ≥ y) + 2nx/y

(eE|X|β

xyβ−1

)x/y
.

Lemma 2.3 ([2], Billingsley, pp. 79–80). Let {W (t); t ≥ 0} be a standard
Wiener process. Then for all x > 0,

P
{

sup
0≤s≤1

|W (s)| ≥ x
}
= 1−

∞∑
k=−∞

(−1)kP{(2k − 1)x ≤ N ≤ (2k + 1)x}
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= 4

∞∑
k=0

(−1)kP{N ≥ (2k + 1)x}

= 2
∞∑
k=0

(−1)kP{|N | ≥ (2k + 1)x}.

In particular,

P
{

sup
0≤s≤1

|W (s)| ≥ x
}
∼ 2P (|N | ≥ x) ∼ 4√

2πx
e−x2/2 as x → ∞.

It is easy to get the following result from Theorem 3 of Shao [13].

Lemma 2.4. For any x > 0, y > 0, we have

P
{

max
1≤k≤n

|Sk| ≥ x
}

≤ 2nP{|X| ≥ y}+ 4 exp
{
− x2

8nσ2

}
+ 4
( nσ2

4(xy + nσ2)

)x/(12y)
.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 will be carried out by two steps. First, F itself
will be assumed to be normal, after which the general case is treated.

a. F is normal. Obviously, it is sufficient to prove the conclusion for the case
σ2 = 1. We thus assume that F is the standard normal distribution function
Φ, and set Ψ(x) = 1− Φ(x) + Φ(−x), x ≥ 0.

Proposition 3.1.

(3.1) lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P{|Sn| ≥ ϵ
√

nh(n)} =
1

δ + 1
E|N |2δ+2.

Proof. Note that∑
n≥n1

hδ(n)h′(n)P{|Sn| ≥ ϵ
√
nh(n)} =

∑
n≥n1

hδ(n)h′(n)P{|N | ≥ ϵ
√
h(n)}

=
∑
n≥n1

hδ(n)h′(n)Ψ(ϵ
√
h(n)).(3.2)

Since hδ(x)h′(x) is monotone nonincreasing on [n1,∞), then

hδ(x)h′(x)Ψ(ϵ
√
h(x))

is monotone nonincreasing on [n1,∞). Hence we can get∫ ∞

n1

hδ(x)h′(x)Ψ(ϵ
√

h(x))dx ≤
∑
n≥n1

hδ(n)h′(n)Ψ(ϵ
√

h(n))

≤
∫ ∞

n1−1

hδ(x)h′(x)Ψ(ϵ
√
h(x))dx.(3.3)
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Note that for any positive constant C,

lim
ϵ↘0

ϵ2δ+2

∫ ∞

C

hδ(x)h′(x)Ψ(ϵ
√

h(x))dx = lim
ϵ↘0

ϵ2δ+2

∫ ∞

h(C)

yδΨ(ϵy1/2)dy

= lim
ϵ↘0

2

∫ ∞

ϵ
√

h(C)

u2δ+1Ψ(u)du

=
1

δ + 1
E|N |2δ+2.(3.4)

Noting that

lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P{|Sn| ≥ ϵ
√
nh(n)}

= lim
ϵ↘0

ϵ2δ+2
∑
n≥n1

hδ(n)h′(n)P{|Sn| ≥ ϵ
√
nh(n)},

and by (3.2)–(3.4), we can get (3.1). □

b. The general case. Now we assume that X, X1, X2, . . . are i.i.d. random
variables with mean 0 and variance 1. Put d(ϵ) = h−1(M/ϵ2), where M > 2.

Proposition 3.2. We have

(3.5) lim
ϵ↘0

ϵ2δ+2
∑

n≤d(ϵ)

hδ(n)h′(n)
∣∣∣P{|Sn| ≥ ϵ

√
nh(n)} −Ψ(ϵ

√
h(n))

∣∣∣ = 0.

Proof. Set ∆n = supx |P{|Sn| ≥
√
nx} − Ψ(x)|. Noting ∆n → 0 as n → ∞

and by Lemma 2.1, we can get

(3.6)
1

hδ+1(m)

m∑
n=1

hδ(n)h′(n)∆n → 0 as m → ∞.

So

ϵ2δ+2
∑

n≤d(ϵ)

hδ(n)h′(n)
∣∣∣P{|Sn| ≥ ϵ

√
nh(n)} −Ψ(ϵ

√
h(n))

∣∣∣
≤ ϵ2δ+2

∑
n≤[d(ϵ)]

hδ(n)h′(n)∆n

= ϵ2δ+2hδ+1([d(ϵ)])
1

hδ+1([d(ϵ)])

∑
n≤[d(ϵ)]

hδ(n)h′(n)∆n

≤ ϵ2δ+2(M/ϵ2)δ+1 1

hδ+1([d(ϵ)])

∑
n≤[d(ϵ)]

hδ(n)h′(n)∆n

= Mδ+1 1

hδ+1([d(ϵ)])

∑
n≤[d(ϵ)]

hδ(n)h′(n)∆n → 0 as ϵ ↘ 0.(3.7)

□
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Proposition 3.3. We have, uniformly with respect to all sufficiently small
ϵ > 0,

(3.8) lim
M→∞

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)Ψ(ϵ
√
h(n)) = 0.

Proof. Note that for sufficiently small ϵ > 0,

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)Ψ(ϵ
√

h(n)) ≤ ϵ2δ+2

∫ ∞

[d(ϵ)]

hδ(x)h′(x)Ψ(ϵ
√
h(x))dx

= 2

∫ ∞

√
ϵ2h([d(ϵ)])

y2δ+1Ψ(y)dy.(3.9)

Since h(d(ϵ) − 1) ≤ h([d(ϵ)]) ≤ h(d(ϵ)) = M/ϵ2 and limx→∞
h(x−1)
h(x) = 1, we

have

lim
ϵ↘0

ϵ2h([d(ϵ)]) = M.

So, for sufficiently small ϵ > 0,

(3.10) ϵ2h([d(ϵ)]) ≥ M/2.

Thus,

(3.9) ≤ 2

∫ ∞

√
M/2

y2δ+1Ψ(y)dy → 0 as M → ∞.
□

Proposition 3.4. We have, uniformly with respect to all sufficiently small
ϵ > 0,

(3.11) lim
M→∞

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)P{|Sn| ≥ ϵ
√

nh(n)} = 0.

Proof. Lemma 2.2 with x = ϵ
√

nh(n), y = ϵ
√
nh(n)/3 and β = 2 yields∑

n>d(ϵ)

hδ(n)h′(n)P{|Sn| ≥ ϵ
√
nh(n)}

≤
∑

n>d(ϵ)

hδ(n)h′(n)nP{|X| ≥ ϵ
√
nh(n)/3}

+
∑

n>d(ϵ)

hδ(n)h′(n)2n3
( eE|X|2

ϵ2nh(n)/3

)3
=: I1 + I2.

(3.12)

By using (3.10), for sufficiently small ϵ > 0, we have

ϵ2δ+2I2 ≤ Cϵ2δ−4
∑

n>d(ϵ)

hδ−3(n)h′(n)

≤ Cϵ2δ−4

∫ ∞

[d(ϵ)]

hδ−3(x)h′(x)dx
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= Cϵ2δ−4

∫ ∞

h([d(ϵ)])

yδ−3dy

= Cϵ2δ−4 1

2− δ

(
h([d(ϵ)])

)δ−2

=
C

2− δ

(
ϵ2h([d(ϵ)])

)δ−2

≤ C

2− δ
Mδ−2 → 0 as M → ∞.(3.13)

By condition (c) of Theorem 1.1 and noting that xh′(x) ≥ 0, it is easy to obtain
that for sufficiently large x > 0, there exists a positive constant l such that

xh′(x) ≤ l.

So, for sufficiently small ϵ > 0 and any positive constant α,∑
n>d(ϵ)

hδ(n)h′(n)nP{|X| ≥ αϵ
√
nh(n)}

≤ l
∑

n>d(ϵ)

hδ(n)P{|X| ≥ αϵ
√
nh(n)}

= l
∑

n>d(ϵ)

hδ(n)
∑
k≥n

P{αϵ
√

kh(k) ≤ |X| < αϵ
√
(k + 1)h(k + 1)}

= l
∑

k>d(ϵ)

P{kh(k) ≤ α−2ϵ−2X2 < (k + 1)h(k + 1)}
∑

d(ϵ)<n≤k

hδ(n)

≤ l
∑

k>d(ϵ)

khδ(k)P{kh(k) ≤ α−2ϵ−2X2 < (k + 1)h(k + 1)}.(3.14)

Since k > d(ϵ) = h−1(M/ϵ2), we have h(k) > M/ϵ2, and consequently

(3.15) (h(k))δ−1 ≤ (M/ϵ2)δ−1.

Thus

(3.14) ≤ l(M/ϵ2)δ−1
∑

k>d(ϵ)

kh(k)P{kh(k) ≤ α−2ϵ−2X2 < (k + 1)h(k + 1)}

≤ l(M/ϵ2)δ−1α−2ϵ−2EX2

= lα−2ϵ−2δMδ−1EX2.(3.16)

So, for sufficiently small ϵ > 0,

(3.17) ϵ2δ+2I1 ≤ 9lϵ2Mδ−1EX2 → 0 as M → ∞.

From (3.12), (3.13) and (3.17), we can get (3.11). □

Theorem 1.1 now follows from the propositions and the triangle inequality.
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4. Proof of Theorem 1.2

Without loss of generality, we assume that σ2 = 1. Let d(ϵ) be as in Section
3. We prove Theorem 1.2 by the following propositions.

Proposition 4.1.

lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P
{

sup
0≤s≤1

|W (s)| ≥ ϵ
√
h(n)

}
=

2

δ + 1
E|N |2δ+2

∞∑
k=0

(−1)k

(2k + 1)2δ+2
.

(4.1)

Proof. By Lemma 2.3, it follows that for any m ≥ 1 and x > 0,

2
2m+1∑
k=0

(−1)kP{|N | ≥ (2k + 1)x}

≤ P
{

sup
0≤s≤1

|W (s)| ≥ x
}
≤ 2

2m∑
k=0

(−1)kP{|N | ≥ (2k + 1)x}.

Hence, it is sufficient to prove that for any q > 0,

(4.2) lim
ϵ↘0

ϵ2δ+2
∑
n≥n0

hδ(n)h′(n)P{|N | ≥ qϵ
√

h(n)} = q−(2δ+2)E|N |2δ+2

δ + 1
.

Similarly to the proof of (3.1), we can get (4.2). Thus the proposition is now
proved. □
Proposition 4.2. We have
(4.3)

lim
ϵ↘0

ϵ2δ+2
∑

n≤d(ϵ)

hδ(n)h′(n)
∣∣∣P{Qn ≥ ϵ

√
nh(n)} − P

{
sup

0≤s≤1
|W (s)| ≥ ϵ

√
h(n)

}∣∣∣ = 0.

Proof. Set ∆′
n = supx |P{Qn ≥

√
nx} − P{sup0≤s≤1 |W (s)| ≥ x}|. Note that

∆′
n → 0 as n → ∞, the rest proof is the same as that of Proposition 3.2, and

we omit the details. □
Proposition 4.3. We have, uniformly with respect to all sufficiently small
ϵ > 0,

(4.4) lim
M→∞

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)P
{

sup
0≤s≤1

|W (s)| ≥ ϵ
√
h(n)

}
= 0.

Proof. By Lemma 2.3, it is easy to obtain that for sufficiently large x > 0,

P{ sup
0≤s≤1

|W (s)| ≥ x} ≤ CP{|N | ≥ x}.

So, for sufficiently small ϵ > 0,

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)P
{

sup
0≤s≤1

|W (s)| ≥ ϵ
√
h(n)

}
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≤ Cϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)P{|N | ≥ ϵ
√
h(n)}.

The rest proof is the same as that of Proposition 3.3. □

Proposition 4.4. We have, uniformly with respect to all sufficiently small
ϵ > 0,

(4.5) lim
M→∞

ϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)P{Qn ≥ ϵ
√
nh(n)} = 0.

Proof. By using Lemma 2.4 with x = ϵ
√
nh(n), y = x

12(δ+2) , we have∑
n>d(ϵ)

hδ(n)h′(n)P{Qn ≥ ϵ
√
nh(n)}

≤ 2
∑

n>d(ϵ)

hδ(n)h′(n)nP

{
|X| ≥

ϵ
√
nh(n)

12(δ + 2)

}

+ 4
∑

n>d(ϵ)

hδ(n)h′(n) exp
{
− ϵ2h(n)

8σ2

}

+ 4
∑

n>d(ϵ)

hδ(n)h′(n)

(
σ2

ϵ2h(n)
3(δ+2) + 4σ2

)δ+2

=: I3 + I4 + I5.

From (3.14)–(3.16), we can obtain that for sufficiently small ϵ > 0,

(4.6) ϵ2δ+2I3 → 0 as M → ∞.

By using (3.10), for sufficiently small ϵ > 0, we have

ϵ2δ+2I4 ≤ 4ϵ2δ+2

∫ ∞

[d(ϵ)]

hδ(x)h′(x) exp
{
− ϵ2h(x)

8σ2

}
dx

= 4

∫ ∞

ϵ2h([d(ϵ)])

uδ exp
{
− u

8σ2

}
du

≤ 4

∫ ∞

M/2

uδ exp
{
− u

8σ2

}
du → 0 as M → ∞,(4.7)

and

ϵ2δ+2I5 ≤ Cϵ2δ+2
∑

n>d(ϵ)

hδ(n)h′(n)
( σ2

ϵ2h(n)

)δ+2

≤ Cϵ−2
∑

n>d(ϵ)

h−2(n)h′(n)

≤ Cϵ−2

∫ ∞

[d(ϵ)]

h−2(x)h′(x)dx
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= Cϵ−2

∫ ∞

h([d(ϵ)])

y−2dy

= C{ϵ2h([d(ϵ)])}−1

≤ 2C

M
→ 0 as M → ∞.(4.8)

Thus, by (4.6)–(4.9), we get (4.5). □
Theorem 1.2 now follows from the propositions and the triangle inequality.
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