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HANKEL PFAFFIANS, DISCRIMINANTS AND

KAZHDAN-LUSZTIG BASES

Alain Lascoux

Abstract. We use Kazhdan-Lusztig bases of representations of the sym-

metric group to express Pfaffians with entries (ai − aj)hi+j . In the case
where the parameters ai are specialized to successive powers of q, and the

hi are complete functions, we obtain the q-discriminant.

Hankel matrices are matrices constant along anti-diagonals. A prototype is
M = |hi+j |i,j=1,...,n, with indeterminates hi in a commutative ring.

With one more set of indeterminates ai, and an integer k ∈ Z, one defines the
Hankel Pfaffian Pf(a,h, n, k) to be the Pfaffian of the antisymmetric matrix
M(a,h, n, k) of order 2n with entries (ai − aj)hi+j−3+k . This is the Pfaffian
that we shall study in this text. Such Pfaffians with ai = i or ai = qi and
special hi have been considered by Ishikawa, Tagawa, Zeng [5].

Hankel matrices, when the hi are identified with complete functions of an
alphabet of cardinality n, are related to resultants, Bezoutians, orthogonal
polynomials, continued fractions, etc [10]. We show similarly in Section 2 and
Section 5 that Hankel Pfaffians in complete functions allow to express resul-
tants, Bezoutians, q-discriminants, and give several determinantal expressions
of such Pfaffians.

The Hankel Pfaffian Pf(a,h, n, k) can be studied by mere algebraic manip-
ulations, this is what we do in Section 2. However, it is much more fruitful to
use the action of the symmetric group on the indeterminates ai. In [11], we
have shown how to diagonalize Pfaffians using Young’s idempotents. In the
present case, it is more convenient to use the bases of Kazhdan and Lusztig [7].
Theorem 13 shows, indeed, that Pf(a,h, n, k) is diagonal in a pair of adjoint
Kazhdan-Lusztig bases.

Apart from the theory of symmetric functions, we shall need properties of
representations of the symmetric group, that we recall in Section 3. Since the
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combinatorics of Kazhdan and Lusztig bases are not well known, we give in this
section more properties than is needed proper for the computation of Pfaffians.

1. Symmetric functions

We recall some properties of symmetric functions, following the conventions
of [10] rather than more classical ones as found in the book of I. G. Macdonald.

1.1. Schur functions

Given a sequence h0 = 1, h1, . . ., given an integer n and u, v ∈ Nn, one
defines the Schur function Sv to be the determinant of [hvj+j−i]i,j=1,...,n, and
the skew Schur function Sv/u to be the determinant of [hvj+j−i−ui ]i,j=1,...,n,
putting hi = 0 for i < 0 (but this convention will be changed later).

Given two finite alphabets x = {x1, . . . , xn} and y = {y1, . . . , ym}, the
complete functions hi(x−y) of x−y are defined by the generating series∏

i=1,...,m

(1− zyi)
∏

i=1,...,n

(1− zxi)−1 =

∞∑
0

zihi(x−y) .

Determinants of order n in the complete functions of x satisfy [10, Th.1.8.3]

(1) det
(
hvj+j−i+un−i+1(x)

)
= Sv(x)Su(x) , u, v ∈ Nn .

Similarly, for r ≥ 0, u, v ∈ Nn such that u ≤ rn, one has

(2) S(v+rn)/u(x) = Sv(x)Sr−un,...,r−u1
(x) .

Schur functions of a difference of alphabets factorize, when the components
of v are big enough [10, Prop.1.4.3]

(3) Sv+mn(x− y) =
∏

i=1,...,n

∏
j=1,...,m

(xi−yj)Sv(x) , v ∈ Nn .

1.2. Invariance by translation of indices

Given x of cardinality n, the sequence hi(x) is a recurrent sequence

(4)

n∑
i=0

(−1)iei(x)hk−i(x) = 0 for k ≥ n

that one can extend, following Wronski, into a recurrent sequence {hk(x) : k ∈
Z} by requiring relation (4) for all k ∈ Z and imposing the initial conditions
h−1(x) = 0 = · · · = h1−n(x) [6].

From now on, the notation hk(x), as well as the different determinants in the
hk(x), will use this convention. For example, a skew Schur function is defined
for any pair v, u ∈ Zn : Sv/u(x) = det(hvj−ui+j−i(x)). In fact, one has

1

x1 · · ·xn
Sv/u(x) = S(v−1n)/u(x) = Sv/(u+1n)(x) ,

so that, up to powers of x1 · · ·xn, one can recover indices in Nn.
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The properties of determinants of order n in the hi(x) extend without further
ado. For any u, v ∈ Zn, any r ∈ Zn, one has

(5) Sv/u(x) = Sv+rn(x)Sr−un,...,r−u1(x) .

For example, for n = 3, one has h−1(x) = 0, h−2(x) = 0, h−3(x) = (x1x2x3)−1

and

S023/001(x) =

∣∣∣∣∣∣
h0(x) h3(x) h5(x)
h−1(x) h2(x) h4(x)
h−3(x) h0(x) h2(x)

∣∣∣∣∣∣
factorizes into

(
x−1

1
+x−1

2
+x−1

3

)
S023(x), but this is not the case of the determi-

nant

∣∣∣∣ h0(x) h3(x) h5(x)
0 h2(x) h4(x)
0 h0(x) h2(x)

∣∣∣∣ corresponding to the conventions hk(x) = 0 for k < 0.

More generally, given any alphabet y = {y1, . . . , ym}, then hi(x − y) is
a recursive sequence satisfying the same recursion (4), and therefore can be
extended to negative indices. The corresponding skew Schur functions still
satisfy, for u, v ∈ Zn,

(6)
1

x1 · · ·xn
Sv/u(x) = S(v−1n)/u(x) = Sv/(u+1n)(x) .

For example, for n = 2 = m, one has h1(x−y) = x1+x2−y1−y2, h0(x−y) =
1− y1y2(x1x2)−1, h−1(x−y) = (y1+y2)(x1x2)−1 − y1y2(x1+x2)(x1x2)−2 and

S02/00(x−y) =

∣∣∣∣ h0(x−y) h3(x−y)
h−1(x−y) h2(x−y)

∣∣∣∣ =

∣∣∣∣ 1− ey2e
−1
2 h3 − ey1h2 + ey2h1

ey1e
−1
2 − e

y
2e1e

−2
2 h2 − ey1h1 + ey2

∣∣∣∣
= (x1x2)−2S24/00(x−y) = (x1x2)−2R(x,y)(x2

1+x1x2+x2
2) ,

writing ei, hi for the functions of x, and ey1, e
y
2 for those of y.

1.3. Bezoutians and resultants

Given x = {x1, . . . , xn}, the remainder of a polynomial f(y) modulo Sn(y−x)
is the only polynomial Rxf of degree ≤ n−1 such that

(7) Rxf(xi) = f(xi) , i = 1, . . . , n .

Thus, the definition of the remainder can be extended to any function f(y), in
particular, can be extended [15] to polynomials in y, y−1, by requiring relations
(7).

Similarly, the Bezoutian Bezx(f) of a function f(y, z) is the matrix Bezx(f) =
[bij ]i,j=0,...,n−1, where

∑n
i,j=0 bijz

n−1−iyn−j−1 is the remainder of f(y, z) mod-

ulo Sn(z − x) and modulo Sn(y − x) [10, 12, Th.3.4.1].
Given another alphabet c = {c1, . . . , cm}, the resultant R(x, c) is defined to

be

R(x, c) =

n∏
i=1

m∏
j=1

(xi − cj) .

It is also [10, Th.3.2.1] equal to the Schur function Smn(x− c).



748 ALAIN LASCOUX

Lemma 1. The determinant of Bezx
(
Sn−1(y + z)Sm(z−c)

)
is equal to the

resultant R(x, c).

Proof. Instead of expanding the double remainder in the basis yjzi, let us
choose the basis yjSi(z−c), i, j = 0, . . . , n−1. One has

Sn−1(y + z)Sm(z−c) =

n−1∑
j=0

yn−1−jzjSm(z−c) =

n−1∑
j=0

yn−1−jSm+j(z−c)

=

n−1∑
j=0

yn−1−jSm+j

(
(z−x) + (x−c)

)

≡
n−1∑
j=0

n−1∑
i=0

yn−1−jSi(z−x)Sm+j−i(x−c) .

Hence, the Bezoutian, expressed in these bases, is the matrix [Sm+j−i(x−c)],
the determinant of which is equal to Smn(x− c). �

Using {c1, . . . , cm, 0} instead of c, one obtains that the determinant of

Bezx
(
Sn−1(y + z) zSm(z−c)

)
is equal to x1 · · ·xnR(x, c) = S(m+1)n(x− c), and more generally, that

(8) det
(
Bezx

(
Sn−1(y + z) zkSm(z−c)

))
= S(m+k)n(x− c) ,

the equality being valid for k ∈ Z, once its is checked for a single value of k.
For example, for n = 2 = m, the matrices of the remainders in the basis

{1, y} ⊗ {1, z−x} are, for k = 0, −1, −2 respectively,[
S1(x−c) S2(x−c)
S2(x−c) S3(x−c)

]
,

[
1− c1c2

x1x2
S1(x−c)

S1(x−c) S2(x−c)

]
,

[
y1+y2
x1x2

− y1y2(x1+x2)
(x1x2)2 1− c1c2

x1x2

1− c1c2
x1x2

S1(x−c)

]
.

1.4. Discriminants

Let f(y) = R(y,x). Write the derivative f ′(y) of f(y) in the factorized form
f ′(y) = nR(y,xder), using the alphabet xder of roots of f ′(y). The logarithmic
derivative of f ′(y) shows that pk(x) = nhk(x−xder) for any k ≥ 0. Since for
any i, {xri } is a recursive sequence satisfying (4), {pr(x) = xr1+ · · ·+xrn, r ∈ Z}
is a recursive sequence satisfying (4). Thus the equality pk(x) = nhk(x−xder)
can be extended to any k ∈ Z by taking the preceding conventions for hk(x)
and pk(x), k ∈ Z.

The resultant of R(x,xder) is equal to S(n−1)n(x−xder), that is, to the deter-

minant | 1npn−1+j−i(x)|i,j=1,...,n, which is equal to (−1)(
n
2)D(x, 1), whereD(x, 1)

is the square of the Vandermonde in x, called the discriminant.
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More generally, the resultant R(x, qx) =
∏
i,j=1,...,n(xi−qxj) = Snn(x−qx)

is equal to (−1)(
n
2)(1−q)nx1 · · ·xn times the q-discriminant

D(x, q) =
∏

1≤i<j≤n

(xi − qxj)(xj − qxi) .

2. Determinantal expressions

It is clear that Pf(a, h, n, 0) is of degree n in the variables h0, h1, . . ., and
thus expands as a sum of Schur functions of index in Nn. One can therefore
introduce x = {x1, . . . , xn} and specialize each hi to the complete function
hi(x) without loss of information (thanks to homogeneity, h0(x) = 1 creates
no problem). Moreover, we have seen in the preceding section that shifting the
indices hi(x)→ hi+k(x) with a fixed k ∈ Z multiplies the skew Schur functions
of x by a factor (x1 · · ·xn)k. Hence, it is easy to pass from the Pfaffian in
(ai−aj)hi+j−3(x) to the Pfaffian in (ai−aj)hi+j−3+k(x).

Let E(x) be the matrix of order 2n with entries the signed elementary sym-
metric functions (−1)j−iej−i(x) (defined to be 0 for negative indices). It is

straightforward that sums of the type
∑j
i=0(−1)iej−i(x)hk+i(x), for k ≥ n−1,

and j ≥ 0, are equal to hook Schur functions S1j ,k(x).
Using this property, one checks the following proposition by decomposing

linearly the Pfaffian matrix according to the ai’s.

Proposition 2. The matrix Etr(x)M(a, h(x), n, 0)E(x) is such that its sub-
matrix on rows and columns n+1, . . . , 2n is null. The submatrix on rows
1, . . . , n and columns n+1, . . . , 2n, denoted by Me(a,x, n), is equal to

(9) Me(a,x, n) =

2n∑
r=1

ar

[
(−1)n+r+i+jen−r+j(x)S1i−1, r−2(x)

]
.

For example, for n = 2, one has
1 0 0 0
−e1 1 0 0
e2 −e1 1 0
0 e2 −e1 1




0 (a1 − a2)S0 (a1 − a3)S1 (a1 − a4)S2

(a2 − a1)S0 0 (a2 − a3)S2 (a2 − a4)S3

(a3 − a1)S1 (a3 − a2)S2 0 (a3 − a4)S4

(a4 − a1)S2 (a4 − a2)S3 (a4 − a3)S4 0




1 −e1 e2 0
0 1 −e1 e2

0 0 1 −e1

0 0 0 1



=


0 (a1−a2)S0 (a2−a3)S1 (a3−a4)S2 + (a3−a2)S11

(a2−a1)S0 0 (a3−a1)S11 (a4−a3)S12

(a3−a2)S1 (a1−a3)S11 0 0
(a4−a3)S2 + (a2−a3)S11 (a3−a4)S12 0 0

.
The 2× 2 North-East corner Me(a,x, 2) expands as

a1

[
−e2S0,−1 0
−e2S1,−1 0

]
+ a2

[
e1S0,0 −e2S0,0

e1S1,0 −e2S1,0

]
+ a3

[
−e0S0,1 e1S0,1

e0S1,1 −e1S1,1

]
+ a4

[
0 −e0S0,2

0 e0S1,2

]
= a1

[
0 0
−e2 0

]
+ a2

[
e1 −e2

0 0

]
+ a3

[
−e1 e1S1

e2 −e2S1

]
+ a4

[
0 −S2

0 e1S2

]
.

One can also write the Pfaffian as the determinant of a 2n × 2n matrix in
different manners, as shows the next result.
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Proposition 3. For a given n, let Mh be the matrix of order 2n with i-th row

[hn+1−i(x), . . . , h2n−i(x), an−i+1hn+1−i(x), . . . , an−i+1h2n−i(x)] ,

let Me be the matrix obtained by changing each hi(x) to ei(x) in Mh, and
finally, let Mx be the matrix with i-th row

[x2n−i
1 , . . . , x2n−i

n , a2n−i+1x
2n−i
1 , . . . , a2n−i+1x

2n−i
n ] .

Then Pf(a, h(x), n, 2−n) is equal to the determinant of Mh, of Me, and equal
to the quotient of the determinant of Mx by the square of the Vandermonde
determinant in x1, . . . , xn.

Proof. It results from the analysis in [11] that the Pfaffian is determined by
specializing a to a permutation of 1n0n (in fact, Yamanouchi words suffice). In
that case, the Pfaffian becomes equal, up to a sign, to some determinant of order
of n (denoted g(i · · · j|k · · · `) in [11]). In the present case, this determinant is
of the type |hui+vj+i+j−n−1(x)|, with u, v two increasing partitions in Nn. But

such a determinant is equal to (−1)(
n
2)Su(x)Sv(x) thanks to (1). Similarly, the

specializations of Mh,Me or Mx give rise to products of two Schur functions.
�

For example, for n = 2, the three matrices appearing in the proposition are
h2 h3 a4h2 a4h3

h1 h2 a3h1 a3h2

1 h1 a2 a2h1

0 1 0 a1

 ,


e2 0 a4e2 0
e1 e2 a3e1 a3e2

1 e1 a2 a2e1

0 1 0 a1

 ,


x3

1 x3
2 a4x

3
1 a4x

3
2

x2
1 x2

2 a3x
2
1 a3x

2
2

x1 x2 a2x1 a4x2

1 1 a1 a1

 ,
and the determinant of the first two matrices is equal to

Pf(a, h(x), 2, 0) = (a3 − a2)(a4 − a1)S22(x)− (a2 − a1)(a4 − a3)S13(x) .

One can extend the preceding property by shifting indices: hi → hi+r, and
considering functions of x − y instead of x. Thus given y = {y1, . . . , ym} of
cardinality m, and any r ∈ Z let Mh(a,x−y, r) be the matrix of order 2n with
i-th row

[hn+1−i+r(x− y), . . . , h2n−i+r(x− y),

an−i+1hn+1−i+r(x− y), . . . , an−i+1h2n−i+r(x− y)] .

Thanks to (5), each minor on the first n columns, or last n columns of
Mh(a,x − y, r) is equal to the product of the same minor of Mh(a,x − y, 0)
by R(x,y) (x1 · · ·xn)r−m. Similarly,

Pf(a, h(x− y), n, k) = Pf(a, h(x), n, 0)R(x,y) (x1 · · ·xn)k−m ,

since the Pfaffian is a linear combination of Schur functions. Hence the pre-
ceding proposition entails:
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Theorem 4. Given two finite alphabets x of cardinality n, y of cardinality m,
and two integers k, r ∈ Z such that k +m+ n− 2r − 2 = 0, then one has

Pf(a, h(x− y), n, k) = (x1 · · ·xn)k−mR(x,y)Pf(a, h(x), n, 0)(10)

=
1

R(x,y)
det
(
Mh(a,x− y, r)

)
.(11)

For example, for n = 2, m = 1, the matrix

Mh(a,x−y, 0) =


h2(x−y) h3(x−y) a4h2(x−y) a4h3(x−y)
h1(x−y) h2(x−y) a3h1(x−y) a3h2(x−y)

1 h1(x−y) a2 a2h1(x−y)
y1(x1x2)−1 1 a1y1(x1x2)−1 a1


has determinant equal to

(x1 − y1)2(x2 − y1)2

(
(a1 − a3)(a2 − a4)− (a1 − a2)(a3 − a4)

(x1 + x2)2

x1x2

)
.

There is another way to evaluate a Hankel Pfaffian, when a is specialized to
q = {1, q, q2, . . . , q2n−1}. The next theorem shows that in that case the matrix
Me(a,x, n) coincides with a Bezoutian.

Theorem 5. Given x of cardinality n, one has for k ∈ Z

(12) Me
(

(qi−1−qj−1)hi+j+k−n−2(x)
)

= Bezx
(
−zkSn−1(qz+y)Sn(qz−x)

)
.

Proof. Suppose k ≥ 0 and expand

−zkSn−1(qz + y)Sn(qz − x) = −
n−1∑
j=0

yjzk+n−1−jqn−1−jSn(qz − x)

= −
n−1∑
j=0

q2n−1−jyjS2n+k−j−1(z − q−1x) .

Using the expression of the remainder as a hook Schur function given in [10,
Th.3.2.1], one has

Sm(z −B) ≡
m∑
j=0

n−1∑
i=0

(−z)iS1n−1−i,m−n+1−j(x)Sj(−q
−1x) mod R(z,x)

and one obtains that the Bezoutian is a matrix with entries equal to hook Schur
functions of x times functions Sj(−q

−1x) = (−1)jq−jej(x). More precisely,
filtering the Bezoutian according to powers of q, one recognizes in this filtration
exactly the filtration of Me(a, n, k) according to a1, . . . , a2n obtained from (9).
The expression remains valid for k < 0 because the entries of the Bezoutian for
variable k form a recursive sequence with the same characteristic polynomial
as the sequence hk(x), k ∈ Z. �
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For example, for n = 2 and k = 0, one has

Bezx
(
−(qz + y)S2(qz − x)

)
= Bezx

(
−S3(qz − x)− yS2(qz − x)

)
=

[
0 0
−e2 0

]
+ q

[
e1 −e2

0 0

]
+ q2

[
−e1 e1S1

e2 −e2S1

]
+ q3

[
0 −S2

0 e1S2

]
.

Since −qSn−1(qz + y)Sn(qz − x) = −Sn−1(z + q−1y)Sn(z − q−1x), the de-
terminant of Bezx(Sn−1(qz+y)Sn(qz−x)) is equal to the resultant R(x, q−1x)
up to a power of q and a sign.

Controlling the power of q, and using the invariance of

det

(
Bezx

(
−zkSn−1(qz + y)Sn(qz − x)

))
(x1 · · ·xn)−k

with respect to k, one obtains the following property.

Theorem 6. Given x of cardinality n, one has for k ∈ Z

Pf
(

(qi−1−qj−1)hi+j+k−n−1(x)
)

= (−1)(
n
2)Snn((1−q)x)(x1 · · ·xn)k(13)

= (−1)(
n
2)(1−q)n(x1 · · ·xn)k+1Dx(q).(14)

For example, for n = 3, and k = −1, one has h−1(x) = 0 = h−2(x) and the
determinant of the skew-symmetric matrix

0 0 0 1− q3 (1− q4)S1 (1− q5)S2

0 0 q − q2 (q − q3)S1 (q − q4)S2 (q − q5)S3

0 q2 − q 0 (q2 − q3)S2 (q2 − q4)S3 (q2 − q5)S4

q3 − 1 (q3 − q)S1 (q3 − q2)S2 0 (q3 − q4)S4 (q3 − q5)S5

(q4 − 1)S1 (q4 − q)S2 (q4 − q2)S3 (q4 − q3)S4 0 (q4 − q5)S6

(q5 − 1)S2 (q5 − q)S3 (q5 − q2)S4 (q5 − q3)S5 (q5 − q4)S6 0


is equal to the square of (1−q)3q3Dx(q).

3. Representations of the symmetric group

To understand the dependency in a of the Pfaffian Pf(a,h, n), we need to
use the theory of representations. Irreducible representations of the symmetric
group Sn over C are in bijection with partitions of n. One usually indexes
bases by standard Young tableaux of a given shape λ. The tableaux of shape λ
can be considered as the vertices of a graph, two tableaux being connected by
an edge of label si if the two tableaux differ by the transposition of i, i+1.

Interpreting tableaux of shape λ as products of Vandermonde determinants,
each column u = [u1, . . . , ur] giving rise to the Vandermonde

∆x(u) =
∏

1≤i<j≤r

(xui − xuj ),
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one obtains the Specht basis of the irreducible representation of index λ of the
symmetric group. More generally, we shall call Specht basis any image of this
basis in another copy of the same representation.

In [11], we have used a Young basis rather than a Specht basis to expand
a Pfaffian of the type Pf((ai − aj)gi,j), 1 ≤ i < j ≤ 2n, gi,j = gj,i, observing
that three symmetric groups are involved: the symmetric group permuting
the ai, the symmetric group acting on gi,j , and the diagonal group acting
simultaneously on the indices of ai and gi,j .

In the case of a Hankel Pfaffian, it will be more illuminating to use several
Kazhdan-Lusztig bases, corresponding to different spaces of polynomials. The
original constructions of Kazhdan and Lusztig stand at the level of the Hecke
algebra. Unfortunately, general irreducible representations are still not fully
explicit. However the case of interest for Pfaffians is the case corresponding to
Graßmannians [9], that is, the case of rectangular partitions of the type [n, n],
or [2n] that one can find in the literature under many disguises.

We shall need only a pair of bases, but prefer to be more complete and
describe the Kazhdan-Lusztig bases of some other realizations of the same
representation.

3.1. Combinatorial objects

Bases of irreducible representations of the symmetric group are usually en-
coded by standard Young tableaux of a given shape. In our case, the shape will
be [n, n] or its transpose [2n].

From a 2 × n Young tableau, one reads two partitions, by subtracting to
the bottom row, as a vector, the vector [1, 2, . . . , n−1], and by subtracting to
[n+1, . . . , 2n] the top row. These two partitions are contained in the stair-
case partition [n−1, . . . , 1, 0]. We shall label bases by the partition λ (written
decreasingly) corresponding to the bottom row of the tableau.

Thus the Young tableau

3 6 7 9 11 12

1 2 4 5 8 10
⇒ [7, . . . , 12]− [3, 6, 7, 9, 11, 12] = [4, 2, 2, 1, 0, 0]

[1, 2, 4, 5, 8, 10]− [1, . . . , 6] = [0, 0, 1, 1, 3, 4]

will be replaced by λ = [4, 3, 1, 1].
To λ one also associates a skew partition λ =

(
[(n−1)n] + λω

)
/λ∼, where

λω means the increasing reordering of λ. For the running example, it is

λ =
(
[56] + [0, 0, 1, 1, 3, 4]

)
/[0, 0, 1, 2, 2, 4] = [5, 5, 6, 6, 8, 9]/[0, 0, 1, 2, 2, 4] .

Reading the border of the diagram of λ, one obtains a Yamanouchi word
that on can represent in the plane as a Dyck path, 1 standing for a North-East



754 ALAIN LASCOUX

step, 0 a South-East step. For n = 4, λ = [3, 1] (figured in grey) one has

1

1 0 1 0

0 1 0

λ = [3, 1]

Yamanouchi [1,1,0,1,0,0,1,0]

Pairing successively in the Yamanouchi word 1 · · · 0 treated as opening and
closing parentheses, one obtains a link pattern. To a link between positions i
and j one associates a factor (ai−aj). Let ϕa(λ) be the product of all such
factors for the link pattern associated to λ. Equivalently, one labels the steps
of the path by 1, 2, . . . , 2n, each factor (ai−aj) corresponding to paired steps.

1

2 3 4

5 6

7 8 9 10 11

12

ϕa([4, 3, 1, 1]) = (a1−a12)(a2−a3)(a4−a7)(a5−a6)(a8−a9)(a10−a11)

Let ψ(λ) be the vector obtained by labeling 0, 2, . . . , 2n−2 the successive
increasing steps of the Dyck path, and labeling each descending step by the
label of the step to which it is paired.

0

2 2 4

6 6

4 8 8 10 10

0

ψ([4, 3, 1, 1]) = [0, 2, 2, 4, 6, 6, 4, 8, 8, 10, 10, 0] .

Given n and a partition λ one labels the boxes of the diagram of λ by a pair
of numbers. The first one increases by 1 when moving horizontally rightwards,
and decreases by 1 when moving vertically downwards, starting from n in the
first box. The second number is 0 for the boxes in the corners, 1 for the new
corners obtained by erasing the preceding corners, and so on. Let us denote
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this bi-labelled diagram Dλ. A similar construction is given in type B by [4].

D4311 =

6, 3 7, 2 8, 1 9, 0

5, 2 6, 1 7, 0

4, 1

3, 0

The weights ϕa(λ) and ψ(λ) will be interpreted as dual Kazhdan-Lusztig
bases, while the diagrams Dλ will be used to generate several Kazhdan-Lusztig
bases [8].

3.2. Basis KL∆
λ

Denoting ∆x(u|v) the product of the two Vandermonde ∆x(u), ∆x(v), one
generates the basis KL∆

λ starting from KL∆
0 := ∆x(1 · · ·n |n + 1 · · · 2n). The

polynomial KL∆
λ is defined to be the image of KL∆

0 under Dλ, the diagram being
read by successive rows, each entry [i, k] being interpreted as si−(1+k)−1, with
si the simple reflection exchanging xi, xi+1.

For example, for n = 3, one has

KL∆
11 = ∆x(123|456)(s3− 1

2 )(s2−1)

= ∆x(123|456)
(
s3s2 − s3 − 1

2 (s2−1)
)

= ∆x(134|256)−∆x(124|356) + ∆x(123|456)

= ∆x(234|156) ,

the last expression being due to the Plücker relations.
The full basis for n = 3 is

KL∆
0 = ∆x(123|456)

KL∆
1 = ∆x(124|356)−∆x(123|456)

nnn
nnn

n
PPPP

KL∆
11 = ∆x(234|561)

PPPP
KL∆

2 = ∆x(345|612)

nnn
nnn

n

KL∆
21 = ∆x(235|461)−∆x(234|561)
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3.3. Basis KLSλ

The family of skew Schur functions S
λ

, λ ≤ ρ, is the Specht basis of an

irreducible representation of index [2n]. One interprets now standard tableaux
as skew Schur functions, instead of products of Vandermonde determinants,
keeping the same action of the symmetric group.

The Kazhdan-Lusztig basis KLSλ is obtained from KLS0 = S(n−1)n using the

diagrams Dλ, λ ≤ ρ, interpreting an entry [i, k] as si − (1+k)−1.
For example, for n = 3, the Specht basis is S

0
= S222, S

1
= S223/001,

S
11

= S233/002, S
2

= S224/011, S
21

= S234/012.

Consequently,

KLS1 = S222(s3 − 1) = S223/001 − S222 = S123,

KLS2 = S222(s3 − 1
2 )(s4 − 1) = S224/011 − S223/001 + S222 = S114,

KLS11 = S222(s3 − 1
2 )(s2 − 1) = S233/002 − S223/001 + S222 = S033,

KLS21 = S222(s3 − 1
2 )(s2 − 1)(s4 − 1)

= S234/012 − S224/011 − S233/002 + S223/001 − 2S222 = S024 + S123 .

In short, the Specht basis and K-L basis for n = 3 are

S222

S223/001

xx
xx
x

F
F

F

S233/002

F
F

F
S224/011

xx
xx
x

S234/012

S222

S123

yy
yy
y

E
E

E

S033

E
E

E
S114

yy
yy
y

S024+S123

It seems a problem of interest for combinatorists to give the explicit expres-
sion of KLSλ in terms of Schur functions. The following lemma describes the
case where KLSλ coincides with a single Schur function.

Lemma 7. Let λ = [βα], β+α ≤ n be a rectangular partition. Then

(15) KLSλ = S(n−1−α)β , (n−1)n−α−β , (n−1+β)α .

Proof. In the case of a rectangular partition, the Kazhdan-Lusztig polynomials
are trivial (i.e., equal to 1) [9]. In our terms, this translates into the fact that
KLSλ is the alternating sum of the elements of the Specht basis on the interval
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of partitions contained in λ:

KLSλ =
∑
µ≤λ

(−1)|µ|S((n−1)n+µ)/µ∼ .

To compute this sum, one may suppose that hi = hi(x), with x of cardinality
n. The skew Schur functions in the RHS factorize into S(n−1)n/µ∼(x)Sµ(x),
according to (2).

To avoid elaborate manipulations of determinants, let us use the operator
πω which sends xv : v ∈ Nn onto Svn,...,v1(x). One can now rewrite the RHS
into

∑
ν≤αβ

(−1)|ν|x

n−β︷ ︸︸ ︷
n−1,...,n−1,n−1−ν1,...,n−1−νβ Sν∼(x)πω

= x

n−β︷ ︸︸ ︷
n−1,...,n−1,

β︷ ︸︸ ︷
n−1−α,...,n−1−αSβα(x− xn−β+1 − · · · − xn)πω

= x(n−1)n−β ,(n−1−α)βxβ
α,0n−α

πω = S(n−1−α)β , (n−1)n−α−β , (n−1+β)α(x) .

This is the required identity. �

3.4. Basis KLxλ

One generates it from KLx0 = x1 · · ·xn, using the diagrams Dλ, interpreting
an entry [i, k] as si + (1+k)−1.

KLx0 = x111000

KLx1 = x110100 + x111000

nnn
nnn

n
PPPP

KLx11 = x1011+x1101+x111

M
M

M
KLx2 = x11001+x1101+x111

qqq
qqq

KLx21 = x10101 + x11001

+x1011 + x1101 + 2x111

The coefficients are specializations t = 1 of some Kazhdan-Lusztig polyno-
mials, which are, in the case of Graßmannians, easy to compute [9]. In the
preceding example, there is only one non trivial Kazhdan-Lusztig polynomial,
and it is equal to 1+t. This explains the coefficient 2 in the expansion of KLx21.

3.5. Dual basis LKa
λ

One generates it using the reversed graph, with edges si − 1, starting from

LKa
ρ = ∆a(12|34| · · · |2n−1, 2n) := (a1−a2)(a3−a4) · · · (a2n−1−a2n) .
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Notice that LKa
ρ is equal to the weight ϕa(ρ). This equality transfers in fact

to all partitions.

Lemma 8. For any λ ≤ ρ, one has LKa
λ = ϕa(λ).

Proof. The recursive definition of LKa
λ implies steps of the type

∆a(· · · |j, i|i+1, k| · · · ) si−1−−−−→∆a(· · · |j, i+1|i, k| · · · )−∆a(· · · |j, i|i+1, k| · · · ) .

But, thanks to the Plücker relations for minors of order 2, this last element
is equal to ∆a(· · · |j, k|i, i+1| · · · ). Therefore, the required property is true by
decreasing induction on λ. �

LKa
21 = ∆a(12|34|56)

j j j j j
TTTT

TTTT
T

LKa
11 = ∆a(12|36|45)

TTTT
TTTT

T
LKa

2 = ∆a(14|23|56)

j j j j j

LKa
1 = ∆a(16|23|45)

LKa
0 = ∆a(16|25|34)

3.6. Dual basis LKx
λ

One defines elements in the ring H2n = Z[x1, . . . , x2n]/Sym+, where Sym+

is the ideal generated by symmetric polynomials without constant term. On
this ring, one has a non-degenerate quadratic form ( , )∂ such that (xu , xv)∂ =
(−1)`(σ) if there exists a permutation σ such that (u + v)σ = [2n−1, . . . , 1, 0],
and (xu , xv)∂ = 0 otherwise [10].

One generates in H2n a family LKx
λ , λ ≤ ρ, using the reversed graph, with

edges −(si+1), starting from LKx
ρ = x0022...,2n−2,2n−2.

Thanks to the ideal, the dual basis can be represented by single monomials :

Lemma 9. For any λ ≤ ρ, one has LKx
λ = xψ(λ).

Proof. An elementary step LKx
λ → LKx

µ in the recursive definition corresponds
to suppressing a corner labelled [i, 0] in Dλ, and for the corresponding weight
ψ(λ), to the transformation

ψ(λ) = w aw′ ab w”bw′′′,

ψ(µ) = w aw′ bb w”aw′′′,

where the box stands in position i, i+1 and a, b are two integers. We claim that

x... bb ...a... ≡ −x... ab ...b...(si+a) = −
(
x... ba ...b... + x... ab ...b...

)
,
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taking the notational liberty of replacing the common components of the two
vectors by dots. By permutation, one can shift the varying components to the
first three positions, and the property to show becomes

xbba... + xbab... + xabb... ≡ 0

the three monomials differing only in the exponents of x1, x2, x3. The nullity of
the sum of three monomials can be tested by checking the scalar products with
all monomials xv. To hope for a permutation of [2n−1, . . . , 0], the exponent
v must belong to {0, 1}2n. But in that case the polynomial (xbba... + xbab... +
xabb...)xv has at least a symmetry in x1, x2, or x1, x3, or x2, x3 and therefore
(xbba...+xbab...+xabb..., xv)∂ is null even for those v. �

LKx
21 = x002244

n n n n
PPP

PPP
P

LKx
11 = x002442

PPP
PPP

P
LKx

2 = x022044

o o o o

LKx
1 = x022440

LKx
0 = x024420

3.7. Duality KL∆
λ , LKx

λ

It remains to justify the terminology “dual basis”, which does not reduce to
reversing graphs. It is natural to use the vanishing properties of Vandermonde
determinants, and, thus, to specialize the polynomialsKL∆

λ . In the present case,
the following proposition shows that ψ(0), . . . , ψ(ρ) are convenient interpolation
points.

Proposition 10. For any λ, µ ≤ ρ, one has

(16) KL∆
λ (ψ(µ)) = (−1)|λ|−|µ|cnδλ,µ ,

with cn =
∏

1≤i<j≤n(2i− 2j)2.

Proof. Let us denote (f, xv) the evaluation of a function f(x1, . . . , x2n) in x1 =
v1, . . . , x2n = v2n. This form is compatible with the action of the symmetric
group: (fsi, g) = (f, gsi).

On the other hand, given three exponents which differ only in three places,
of the type [. . . bb . . . a . . . ], [. . . ba . . . b . . . ], [. . . ab . . . b . . . ], one has(

∆x(1 . . . n|n+1 . . . 2n) , x...bb...a... + x...ba...b... + x...ab...b...
)

= 0

and therefore, for any λ ≤ ρ,

(17)
(
KL∆

λ , x
...bb...a... + x...ba...b... + x...ab...b...

)
= 0 .
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Starting with
(
KL∆

λ , x
002244...

)
= cnδλ,ρ, one supposes that for some µ the

proposition is true. Let [i, 0] be a corner of Dµ, and let ν be the partition
obtained from µ by removing this corner. Then

(KLxλ, LK
x
ν ) =

(
KLxλ,−LK

x
µ(si+1)

)
= −

(
KLxλ(si+1), LKx

µ)

thanks to (17) and Lemma 9. Non nullity can occur only for λ = µ or λ = ν.
Since KLxν(si−1) = KLxµ +

∑
η 6=µ,ν cηKL

x
η , one has

−
(
KLxν(si+1), LKx

µ) = −
(
KLxµ, LK

x
µ),

−
(
KLxµ(si+1), LKx

µ) = −
(
KLxν(si−1)(si+1), LKx

µ) = 0 ,

which is what is expected for the proof by induction to be valid. �

3.8. Duality KLxλ, LKx
λ

All the products KLxλLK
x
µ have total degree 0+1+ · · ·+(2n−1). This points

to using the form ( , )∂ [2].

Proposition 11. For any λ, µ ≤ ρ, one has

(18)
(
KLxλ, LKµ

)∂
= δλ,µ .

Proof. The starting point is
(
x1...10...0, LKµ

)∂
= δ0,µ. The general case is de-

duced by the same induction as in the preceding case, using, for any f, g, any
i ≤ 2n−1 the identity (f, gsi)

∂ = −(fsi, g)∂ . �

3.9. Duality KLxλ, LKa
λ

This time, we shall use the vanishing properties of the polynomials LKa
λ.

Proposition 12. For any λ, µ ≤ ρ, one has

(19) (LKa
λ,KL

x
µ) = δλ,µ .

Proof. The starting point is LKa
µ

(
x1...10...0

)
= δ0,µ and the proof by induction

goes as before. �

4. Hankel Pfaffians in terms of Kazhdan-Lusztig basis

In [11, Th.4.1], we have given several expressions of a Pfaffian with entries
(ai−aj)gi,j .

For the present case, for n = 3, this would read in the Specht basis as

Pf(a, h(x), 3, 0)

= − 4 5 6
1 2 3

S444(x) + 3 5 6
1 2 4

S445/001(x)− 3 4 6
1 2 5

S446/011(x)

− 2 5 6
1 3 4

S455/002(x) + 2 4 6
1 3 5

(
S456/012(x)− S444(x)

)
,

each tableau being interpreted as a product of factors (ai−aj) corresponding
to its columns.
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In [11], we have shown in particular that the Pfaffian is diagonal in terms
of Young’s orthonormal basis. The underlying quadratic form in that case
is formally defined in terms of tableaux [14, 2], but corresponds to the form
( , )∂ when interpreted in the appropriate spaces. Therefore, thanks to (18),
the Pfaffian remains diagonal when using Kazhdan-Lusztig bases instead of
Young’s bases [16], and one has the following theorem.

Theorem 13. Given n, then one has

(20) Pf(a,h, n, 1−n) =
∑
λ≤ρ

(−1)|λ|LKa
λKL

S
λ .

For example, for n = 3, one has

Pf(a,h, 3,−2)

= ∆a(16|25|34)KLS0 −∆a(16|23|45)KLS1 + ∆a(14|23|56)KLS2

+ ∆a(12|36|45)KLS11 −∆a(12|34|56)KLS21

= (a1 − a6)(a2 − a5)(a3 − a4)S222 − (a1 − a6)(a2 − a3)(a4 − a5)S123

+ (a1 − a4)(a2 − a3)(a5 − a6)S114 + (a1 − a2)(a3 − a6)(a4 − a5)S033

− (a1 − a2)(a3 − a4)(a5 − a6)(S024 + S123).

5. Discriminants and Bezoutians

The case where a specializes to q = [1, q, . . . , q2n−1] is of special interest. The
Pfaffian Pf(q, h(x−y), n, k) is proportional Pf(q, h(x), n, 2−n), which is equal
to the determinant of the matrix Mh(q,x, 0). But, because of homogeneity,
one does not change the value of this determinant by replacing the entries
aihj(x) = qi−1hj(x) by qjhj(x) = hj(qx). The Laplace expansion of this

new matrix along the first n columns is equal to q(
n
2) times the expansion of

Snn(x− qx) = R(x, qx) = (1−q)n(x1 · · ·xn)D(x, q).
In final, one has the following theorem linking Pfaffians, resultants and dis-

criminants.

Theorem 14. Given x of cardinality n, y of cardinality m, and k ∈ Z, then

(21) Pf(q, h(x−y), n, k) = q(
n
2)(1−q)n(x1 · · ·xn)k+n−1−mR(x,y)D(x, q) .

Consequently, one can use the expression of the Pfaffian in terms of the
KL-basis to expand the q-discriminant.

For example, for n = 2, 3, 4, denoting [i] the q-integer (qi−1)/(q−1), one has
the following expansions:

D(2, q) = [3]KLS0 − qKLS1 = (1+q+q2)S11 − qS02 ,

D(3, q) = [3][5]KLS0 − q[5]KLS1 + q[3]2KLS2 + q2[3]KLS11 − q3KLS12

= (1+q+q2)(1+ · · ·+q4)S222 − q(1+ · · ·+q4)S123 + q2(1+q+q2)S114

+ q2(1+q+q2)S033 − q3(S024 + S123) ,
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D(4, q) = [3][5][7]KLS0 − q[5][7]KLS1 + q2[3][7]KLS2 − q3[3][5]KLS3

+ q2[3][7]KLS11 − q3[7]KLS21 − q3[3][5]KLS111

+ q4[3]2KLS22 + q4[5]KLS31 + q4[5]KLS211

− q5[3]KLS32 − q5[3]KLS221 − q5[3]KLS311 + q6KLS321.

Since one has pr(x) = nhr(x−xder), one obtains from (21) the evaluation of
Pfaffians where the power sums replace the complete functions, the resultant
being replaced by the discriminant.

Corollary 15. Given x of cardinality n and k ∈ Z, then

(22) Pf(q ,p(x), n, k) = (−q)(
n
2)(1−q)n(x1 · · ·xn)k D(x, 1)D(x, q) .

The limit q → 1 gives that the Pfaffian with entries (i − j)pi+j−3+k(x) is
equal to

(x1 · · ·xn)k+n−1−mD(x, 1)D(x, q)

and that the Pfaffian with entries (i− j)pi+j−3+k(x) is equal to

(−1)(
n
2)(x1 · · ·xn)k D(x, 1)2 .

One can also use the matrix Mh(q,x − xder, k). For example, for n = 2,
k = 0, one has∣∣∣∣∣∣∣∣
x2

1+x2
2 x3

1+x3
2 q3(x2

1+x2
2) q3(x3

1+x3
2)

x1+x2 x2
1+x2

2 q2(x1+x2) q2(x2
1+x2

2)
2 x1+x2 2q q(x1+x2)

1
x1

+ 1
x2

2 1
x1

+ 1
x2

2

∣∣∣∣∣∣∣∣ =
q(q − 1)2

x1x2
(x1−x2)4(x1−qx2)(x2−qx1).

6. Remark about Macdonald polynomials

The KL-basis for the representations of shape [2n] or [n, n] of the Hecke
algebra is related to the non-symmetric Macdonald polynomials Mv(x2n; t, q),
v ∈ N2n. In [3], one finds a common deformation of the KL basis and the
Macdonald polynomials indexed by a permutation of [. . . 221100], when q is
specialized to a certain root of t.

The t-discriminant itself, which is a symmetric function, is equal to the spe-
cialization of the symmetric Macdonald polynomial indexed by the (decreasing)
partition [2n−2, . . . , 2, 0] [1, Th.3.2]. The t-discriminants also appear as special-
izations of symmetric Macdonald polynomial indexed by rectangular partitions
[13, Remark 4.9].

Investigating extensively the specializations of symmetric or non-symmetric
Macdonald polynomials at q = tα seems to be of great interest.
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