DOI QR코드

DOI QR Code

Design and Analysis of a Vibration-driven AA Size Electromagnetic Energy Harvester Using Magnetic Spring

  • Foisal, Abu Riduan Md. (School of Electrical Engineering, University of Ulsan) ;
  • Chung, Gwiy-Sang (School of Electrical Engineering, University of Ulsan)
  • 투고 : 2012.02.20
  • 심사 : 2012.05.29
  • 발행 : 2012.06.25

초록

This paper describes the design, simulation and characterization of an AA size electromagnetic energy harvester that is capable of converting environmental vibration into electrical energy. A magnetic spring technique is used to scavenge energy from low frequency external vibrations. The generator is characterized by ANSYS 2D finite element analysis, and optimized in terms of moving mass, fixed magnet size, coil width and load resistance. The optimized energy harvester is able to generate 53.5 mW of average power at 8.1 Hz resonance frequency, with a displacement of 0.5 mm.

키워드

참고문헌

  1. S. Roundy, P. K. Wright, and J. Rabaey, Compt. Commun., 26, 1131 (2003) [DOI: S0140-3664(02)00248-7]. https://doi.org/10.1016/S0140-3664(02)00248-7
  2. W. K. G. Seah, Z. A. Eu, and H.P. Tan, Proc. of CTIF Wireless Conf., VITAE, (2009) [DOI: 978-1-4244-4067-2/09].
  3. T. Starner, IEEE Computer, 35, 133 (2002) [DOI:10.1109/ICSENS.2004.1426407].
  4. H. Kulah, and K. Najafi, IEEE Sens. J., 8, 261 (2008) [DOI: 10.1109/JSEN.2008.917125].
  5. I. Sari, T. Balkan, and H. Kulah, Sens. Actuators A, 145, 405 (2008) [DOI: 10.1016/j.sna.2007.11.021].
  6. H. Kulah, and K. Najafi, Proc. 17th IEEE Conf. on MEMS, 237 (2004) [DOI:10.1109/MEMS.2004.1290566].
  7. S. C. L Yuen, J. M. H. Lee, W. J. Li, and P. H. W. Leong, IEEE Pervasive Comput., 6, 64 (2007) [DOI: 1536-1268/07].
  8. J. M. H. Lee, S.C. Yuen, W. J. Li, and P. H. W. Leong, Proc. Int. Symp. Circuits Syst., 4, 876 (2004) [DOI:10.1109/ISCAS.2003.1206360].
  9. S. Korla, R.A. Leon, I.N. Tansel, A. Yenilmez, A. Yapici, and M. Demetgul, J. Micromech. Microeng., 42, 265 (2011) [DOI:10.1016/j.mejo.2010.10.018].
  10. T. Galchev, H. Kim, and K. Najafi, Prof. of Eurosensors XIII Conf., 1439 (2009) [DOI: 10.1016/j.proche.2009.07.359].
  11. B.P. Mann, and N.D. Sims, J. Sound Vib., 319, 515 (2009) [DOI: 10.1016/j.jsv.2008.06.011].
  12. I. S.C. Mukhopadhyay, J. Donaldson, G. Sengupta, S. Yamada, C. Chakraborty, and D. Kacprzak, IEEE Trans. Magn., 39, 3220 (2003) [DOI: 10.1109/TMAG.2003.816727].
  13. M. Mizuno, and D.G. Chetwynd, J. Micromech. Microeng., 13, 209 (2003) [DOI: S0960-1317(03)35887-5]. https://doi.org/10.1088/0960-1317/13/2/307
  14. N. Awaja, D. Sood, and T. Vinay, Sens. Trans. J., 103, 109 (2009) [DOI: ISSN 1726-5479].
  15. M. Duffy, and D. Carroll, IEEE 35th Ann. Power Electronics Specialists Conf., 2075 (2004) [DOI: 0-7803-8399-0/04].

피인용 문헌

  1. Rotational Electromagnetic Energy Harvesting System vol.75, 2015, https://doi.org/10.1016/j.phpro.2015.12.137
  2. Investigation of an Electromagnetic Wearable Resonance Kinetic Energy Harvester With Ferrofluid vol.53, pp.9, 2017, https://doi.org/10.1109/TMAG.2017.2714621
  3. Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor vol.9, pp.6, 2013, https://doi.org/10.1007/s13391-013-6032-4
  4. Effects of post-calcination and mechanical pulverization on the electrochemical properties of nano-sized Li 4 Ti 5 O 12 for hybrid capacitors vol.17, pp.2, 2017, https://doi.org/10.1016/j.cap.2016.10.020
  5. Study of piezoelectric materials combined with electromagnetic design for bicycle harvesting system vol.8, pp.4, 2016, https://doi.org/10.1177/1687814016646548
  6. Temperature dependence of a magnetically levitated electromagnetic vibration energy harvester vol.256, 2017, https://doi.org/10.1016/j.sna.2017.01.011
  7. Design, Development and Scaling Analysis of a Variable Stiffness Magnetic Torsion Spring vol.10, pp.10, 2013, https://doi.org/10.5772/57300
  8. Preparation and characteristics of Li4Ti5O12 with various dopants as anode electrode for hybrid supercapacitor vol.13, pp.7, 2013, https://doi.org/10.1016/j.cap.2013.04.002