DOI QR코드

DOI QR Code

Electrochemical Performance of Lithium Iron Phosphate by Adding Graphite Nanofiber for Lithium Ion Batteries

  • Wang, Wan Lin (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • Received : 2012.03.06
  • Accepted : 2012.05.29
  • Published : 2012.06.25

Abstract

Olivine type $LiFePO_4$ cathode material was synthesized by solid-state reaction method including one-step heat treatment. To improve the electrochemical characteristics, graphite nanofiber (GNF) was added into $LiFePO_4$ cathode material. The structure and morphological performance of $LiFePO_4$ were investigated by X-ray diffraction (XRD); and a field emission-scanning electron microscope (FE-SEM). The synthesized $LiFePO_4$ has an olivine structure with no impurity, and the average particle size of $LiFePO_4$ is about 200~300 nm. With graphite nanofiber added, the discharge capacity increased from 113.43 mAh/g to 155.63 mAh/g at a current density of 0.1 $mA/cm^2$. The resistance was also significantly decreased by the added graphite nanofiber.

Keywords

References

  1. Hu Guo-rong, GAO Xu-guang, PENG Zhong-dong, DU Ke, TAN Xian-yan, LIU Yan-jun, Trans Nonferrous Met Soc. China. 17 (2007) 296-300 [DOI: http://dx.doi.org/10.1016/S1003-6326(07)60088-0].
  2. HU G R, GAO X G, PENG Z D, CHEN Z Y, TAN X Y, YU X Y, Trans Nonferrous Met Soc. China. (2005), 15(4): 795-798
  3. MYUNG S T, KOMABA S, HIROSAKI N, YASHIRO H, KUMAGAI N. Electrochimica Acta, 2004 49(24): 4213-4222 [DOI: http://dx.doi.org/10.1016/j.electacta.2004.04.016].
  4. BAKER J, SAIDI M Y, SWOYER J. Electrochem Solid-State Lett, 2003 6(3): A53-A55 [DOI: http://dx.doi.org/10.1201/9780203913321.ch15].
  5. YANG S F, ZAVALIJ P Y, WHITTINGGHAM M S. Electrochem Commun, 2001, 3(9): 505-508 [DOI: http://dx.doi.org/10.1016/S1388-2481(01)00200-4].
  6. PARK K S, KANG K T, LEE S B, KIM G Y, PARK Y J, KIM H G. Materials Research Bulletin, 2004, 39(12): 1803-1810 [DOI: http://dx.doi.org/10.1016/j.materresbull.2004.07.003].
  7. YAMADA A, CHUNG S C, HINOKUMA K. J Electrochem Soc, 2001, 148(3): A224-A229 [DOI: http://dx.doi.org/10.1149/1.13482 57]
  8. CHO T H, CHUNG H. J Power Sources, 2004, 133(2): 272-276 [DOI: http://dx.doi.org/10.1016/j.jpowsour.2004.02.015].
  9. CHUNG S Y, BLOCKING J T, CHIANG Y M. Nature Mater, 2002, 2: 123-128 [DOI: http://dx.doi.org/10.1038/nmat732].
  10. MI C H, ZHANG X G, ZHAO X B, LI H L. Materials Science & Engineering, 2006, 129: 8-13 [DOI: http://dx.doi.org/10.1016/j.mseb.2005.11.015].
  11. SLI G H, KUDO Y, LIU K Y, AZUMA H, TOHDA M. J Electrochem Soc, 2002, 149(11): A1414-A1418 [DOI: http://dx.doi.org/10.1149/1.1510768].
  12. Xinlu Li, Feiyu Kang, Xinde Bai, Wanci Shen, Electrochemistry Communications 9 (2007) 663-666 [DOI: http://dx.doi.org/10.1016/j.elecom.2006.10.050].
  13. Li Wang, Haibo Wang, Zhihong Liu, Chen Xiao, Shanmu Dong, Pengxian Han, Zhongyi Zhang, Xiaoying Zhang, Caifeng Bi, Guanglei Cui. Solid State Ionics 181 (2010) 1685-1689 [DOI: http://dx.doi.org/10.1016/j.elecom.2006.10.050].
  14. Hee-Cheol Kang, Dae-Kyoo Jun, Bo Jin, En Mei Jin, Kyung-Hee Park, Hal-Bon Gu, Ki-Won Kim, Journal of Power Sources 179 (2008) 340-346 [DOI: http://dx.doi.org/10.1016/j.jpowsour.2007.12.093].
  15. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188 [DOI: http://dx.doi.org/10.1149/1.1837571].
  16. J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett. 59 (2005) 2361 [DOI: http://dx.doi.org/10.1002/chin.200544013].
  17. Atef Y. Shenouda, Hua K. Liu. Journal of Alloys and Compounds 477 (2009) 498-503 [DOI: http://dx.doi.org/10.1016/j.jallcom.2008.10.077]

Cited by

  1. Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer vol.235, 2017, https://doi.org/10.1016/j.electacta.2017.03.118
  2. Electrochemical characterization of LiFePO4/poly (sodium 4-styrenesulfonate)-multi walled carbon nanotube composite cathode material for lithium ion batteries vol.569, 2013, https://doi.org/10.1016/j.jallcom.2013.03.139
  3. Composite coating of Li 2 O–2B 2 O 3 and carbon as multi-conductive electron/Li-ion channel on the surface of LiNi 0.5 Mn 1.5 O 4 cathode vol.365, 2017, https://doi.org/10.1016/j.jpowsour.2017.08.080
  4. Carbon gel assisted low temperature liquid-phase synthesis of C-LiFePO4/graphene layers with high rate and cycle performances vol.295, 2015, https://doi.org/10.1016/j.jpowsour.2015.06.145
  5. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode vol.282, 2013, https://doi.org/10.1016/j.apsusc.2013.05.149
  6. The transparent all-solid-state rechargeable micro-battery manufacturing by RF magnetron sputtering vol.713, 2017, https://doi.org/10.1016/j.jallcom.2017.04.169
  7. LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition vol.44, pp.10, 2014, https://doi.org/10.1007/s10800-014-0717-8
  8. Fabrication and electrochemical properties of cylindrical hybrid supercapacitor using H2Ti12O25 as anode material vol.143, 2015, https://doi.org/10.1016/j.matlet.2014.12.069
  9. Novel performance of ultrathin AlPO4 coated H2Ti12O25 Exceeding Li4Ti5O12 in cylindrical hybrid supercapacitor vol.273, 2015, https://doi.org/10.1016/j.jpowsour.2014.09.090
  10. Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/ Li4-xMxTi5-yNyO12 (M=Na, N=V, Mn) electrodes vol.109, 2016, https://doi.org/10.1016/j.energy.2016.04.128
  11. The low temperature electrochemical performances of LiFePO 4 /C/graphene nanofiber with 3D-bridge network structure vol.217, 2016, https://doi.org/10.1016/j.electacta.2016.09.058
  12. Influence of Conductive Carbon Content Using a Three-Dimensional Foam-Type Current Collector for Lithium Ion Battery vol.163, pp.14, 2016, https://doi.org/10.1149/2.0581614jes
  13. The improving conductivity of LiFePO4 by optimizing the calendaring process vol.432, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/432/1/012059
  14. Comparative study on the ionic conductivities and redox properties of LiPF6 and LiTFSI electrolytes and the characteristics of their rechargeable lithium ion batteries vol.432, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/432/1/012061
  15. Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries vol.2018, pp.2090-3537, 2018, https://doi.org/10.1155/2018/1925708