DOI QR코드

DOI QR Code

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University) ;
  • Yi, Ran (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University) ;
  • Yang, Xu (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University) ;
  • Xu, Man (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University) ;
  • Hui, Sisi (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University) ;
  • Cao, Xiaolong (State Key Laboratory of Power Equipment and Electrical Insulation, Xi'an Jiaotong University)
  • 투고 : 2011.11.04
  • 심사 : 2012.03.28
  • 발행 : 2012.06.25

초록

In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.

키워드

참고문헌

  1. Liu Jiping and Hao Xiangyang, Polymer nanocomposite materials (Science press, Beijing, 2009) p.11.
  2. T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul. 11, 763(2004) [DOI: 10.1109/TDEI.2004.1349782].
  3. Y. Cao, P. C. Irwin and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004). https://doi.org/10.1109/TDEI.2004.1349785
  4. T. J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 11, 739(2004) [DOI: 10.1109/TDEI.2004.1349779].
  5. M. Roy, J. K. Nelson, C. W. Reed, R. K. MacCrone, R. J. Keefe, W. Zenger, and L. S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 12, 1273(2005)[DOI: 10.1109/TDEI.2005.1511089].
  6. T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 12, 669(2005) [DOI: 10.1109/TDEI.2005.1511092].
  7. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005) [DOI: 10.1109/TDEI.2005.1522186].
  8. D. A. Bolon, IEEE Electr. Insul. Mag. 11, 10(1995) [DOI: 10.1109/57.400759].
  9. Z. Li, K. Okamoto, Y. Ohki, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 18, 675(2011) [DOI: 10.1109/TDEI.2011.5931052].
  10. J. J. Park and S. S. Kwon, Trans. Electr. Electron. Mater. 12, 135(2011) [DOI: 10.4313/TEEM.2011.12.4.135].
  11. P. Preetha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 18, 1526 (2011). https://doi.org/10.1109/TDEI.2011.6032821
  12. J. K. Nelson, J. C. Fothergill, L. A. Dissado, and W. Peasgood, 2002 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Mexico)(Cancun, Mexico, 2002 Oct. 20-24)p.295.
  13. J. K. Nelson and Y. Hu, Proceeding of the 2004 IEEE International Conference on Solid Dielectrics (France) (Toulouse, France, 2004 Jul. 05-09) p. 832.
  14. T. Imai, Y. Hirano, H. Hirai, S. Kojima, and T. Shimizu, Conference Record of the 2002 IEEE International Symposium on Electrical Insulation(USA)(Boston, MA, USA, 2002 Apr.07-10) p.379 [ DOI:10.1109/ELINSL.2002.995955].
  15. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr.l Insul. 16, 531 (2009). https://doi.org/10.1109/TDEI.2009.4815189
  16. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 13, 319 (2006) [DOI: 10.1109/TDEI.2006.1624276].

피인용 문헌

  1. Investigation on relationship between breakdown strength enhancement of composites and dielectric characteristics of nanoparticle vol.23, pp.2, 2016, https://doi.org/10.1109/TDEI.2015.005378
  2. Superior mechanical properties of poly vinyl alcohol-assisted ZnO nanoparticle reinforced epoxy composites vol.192, 2017, https://doi.org/10.1016/j.matchemphys.2016.12.055
  3. Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices 2017, https://doi.org/10.1016/j.jmst.2017.10.013
  4. A Review on Nanocomposite Based Electrical Insulations vol.17, pp.5, 2016, https://doi.org/10.4313/TEEM.2016.17.5.239
  5. Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites vol.109, 2016, https://doi.org/10.1016/j.matdes.2016.07.062
  6. Application of silane grafted titanate nanotubes in reinforcing of polyamide 11 composites vol.93, 2016, https://doi.org/10.1016/j.compositesb.2016.03.028
  7. High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures vol.29, pp.24, 2017, https://doi.org/10.1002/adma.201700538
  8. Complex Permeability of 0-3 Polymer Magnetic Composites for Near-Field Communication vol.22, pp.6, 2012, https://doi.org/10.4283/JKMS.2012.22.6.216
  9. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications vol.84, 2016, https://doi.org/10.1016/j.eurpolymj.2016.09.028
  10. Improved electromechanical response in acrylic rubber by different carbon-based fillers 2017, https://doi.org/10.1002/pen.24586
  11. Effect of Nano Al2O3 Doping on Thermal Aging Properties of Oil-Paper Insulation vol.11, pp.5, 2018, https://doi.org/10.3390/en11051176