DOI QR코드

DOI QR Code

미고결 퇴적층내 가스하이드레이트 포화도 계산

Calculation of Gas Hydrate Saturation Within Unconsolidated Sediments

  • 김길영 (한국지질자원연구원 석유해저연구본부)
  • Kim, Gil-Young (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2012.02.09
  • 심사 : 2012.02.27
  • 발행 : 2012.05.31

초록

이 논문은 퇴적물내 포함되어 있는 가스하이드레이트의 포화도를 계산하는 여러 방법에 대하여 토론하고자 한다. 가스하이드레이트의 포화도를 계산하는 방법은 물리검층 자료를 이용하는 방법과 코어자료(압력코어 포함)를 이용하는 방법, 그리고 탄성파 탐사자료로부터 얻을 수 있는 속도 자료를 이용하는 방법 등 크게 세가지 방법으로 나눌 수 있다. 물리검층 자료중 전기비저항 자료를 이용하는 방법의 경우 Archie 식을 주로 이용하는데 이 경우 각각의 변수 값을 정확하게 정의하는 게 중요하다. 또한 가스하이드레이트의 산출형태도 포화도 계산에 큰 영향을 주기 때문에 주의해야 한다. 코어자료를 이용하는 경우 공극수의 염소량을 측정하는 방법과 압력코어를 취득할 경우 이를 이용하는 방법이 있다. 지금까지 발표된 정량적이고 가장 정확한 가스하이드레이트 포화도값을 구할 수 있는 방법이 압력코어를 이용하는 것이다. 그러나 이는 비용과 시간이 많이 소요되기 때문에 연속적인 자료를 얻기가 어렵다는 단점이 있다. 지금까지 발표된 가스하이드레이트 포화도 값을 비교해 보면 전기비저항 값을 이용한 경우가 가장 높은 값을 압력코어를 이용하여 측정한 경우가 가장 낮은 값을 보여주는 경향이 있다. 그러나 이러한 값이 모든 경우에 있어서 절대적인 경향을 보여준다고 볼 수는 없다. 그러므로 가스하이드레이트의 포화도를 정확하게 계산하기 위해서는 여러 가지 방법을 이용하여 계산해야 하며 이를 비교하여 가장 적절한 값을 사용해야 할 것이다.

The purpose of this paper is to review several different methods calculating gas hydrate saturations. There are three methods using downhole log data, core data (including pressure core), and seismic velocity data. Archie's equation using electrical resistivity of downhole log data is widely used for saturation calculation. In this case, Archie's parameters should be defined accurately. And the occurrence types of gas hydrate significantly affect to saturation calculation. Thus saturation calculation should be carefully conducted. The methods using chlorinity and pressure core data are directly calculated from core sample. So far, the saturation calculated from pressure core gives accurate and quantitative values. But this method is needed much more time and cost. Thus acquisition of the continuous data with sediment depth is realistically hard. The recent several results show that the saturation calculated from resistivity data is the highest values, while the value calculated from pressure core is the lowest. But this trend is not always absolutely. Thus, to estimate accurate gas hydrate saturation, the values calculated from several methods should be compared.

키워드

참고문헌

  1. 강동효, 유동근, 박장준, 류병재, 구남형, 김원식, 박관순, 박근필, 김지수, 2009, 동해 울릉분지의 가스하이드레이트 부존형태, 지질학회지, 45, 143-155.
  2. 김길영, 유동근, 김원식, 이호영, 박근필, 2008, LWD/MWD를 이용한 동해 울릉분지 가스하이드레이트 탐사, 물리탐사, 11(3), 263-270.
  3. 김길영, 유동근, 류병재, 2009, 동해 울릉분지 가스하이드레이트 함유 퇴적물의 음파전달속도 특성, 한국음향학회지, 28, 424-431.
  4. 김길영, 유동근, 류병재, 2010, 물리검층 자료를 이용하 동해 울릉분지 가스하이드레이트 함유지층의 물성 특성 해석, 지질학회지, 46, 275-290.
  5. 유동근, 강동효, 구남형, 김원식, 김길영, 김병엽, 정순홍, 김영준, 이호영, 박근필, 이광훈, 박수철, 2008, 동해 울릉분지의 가스 하이드레이트 부존 지구물리 증거, 지질학회지, 44, 645-655.
  6. 최동림, 홍종국, 유해수, 주형태, 한상준, 2001, 동해 울릉분지 남서 사면지역에서의 탄성파 특징으로부터 유추한 가스수화물의 존재가능성, 한국해양학회지, 6(4), 242-248.
  7. 한국자원연구소, 1999, 21세기 신에너지자원 가스하이드레이트 연구, 한국자원연구소 보고서 KR-99(B)-09, 179p.
  8. 허식, 유해수, 김한준, 한상준, 이용국, 2004, 동해 울릉분지 남부해역에 분포하는 가스하이드레이트층의 특성 연구, 석유지질학회지, 10, 18-22.
  9. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Journal of Petroleum Technology, 5, 54-62.
  10. Arp, J. J., 1953, The effect of temperature on the density and electrical resistivity of sodium chloride solutions: Petroleum Transaction, American Institute of Mining, Metallurgical, and Petroleum Engineers, 198, 327-330.
  11. Asquith, G., and Krygowski, D., 2004. Basic well log analysis, AAPG Methods in Exploration Series 16, Tulsa, Okkahoma.
  12. Bahk, J. J., Kim, J. H., Kong, G. S., Park, Y. S., Lee, H., Park, Y. J., and Park, K. P., 2009, Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea, Geosciences Journal, 13, 371-385. https://doi.org/10.1007/s12303-009-0039-8
  13. Bahk, J. J., Um, I. K., and Holland, M., 2011. Core lithologies and their constraints on gas-hydrate occurrence in the East Sea, offshore Korea: Results from the site UBGH1-9, Marine and Petroleum Geology, 28, 1943-1952. https://doi.org/10.1016/j.marpetgeo.2010.12.003
  14. Bosewell, R., and Collett, T. S., 2006, The Gas Hydrate Resource Pyramid, Fire in the Ice, Methane Hydrate R&D Program Newsletter.
  15. Carcione, J. M., and Tinivella, U., 2000, Bottom-simulating reflectors: Seismic velocities and AVO effects, Geophysics, 65, 54-67. https://doi.org/10.1190/1.1444725
  16. Chand, S., Minshull, T. A., Gei, D., and Carcione, J. M., 2004. Elastic velocity models for gas-hydrate-bearing sediments-a comparison, Geophys. J. Int., 159, 573-590. https://doi.org/10.1111/j.1365-246X.2004.02387.x
  17. Chevron Corporation, 2005, The Gulf of Mexico gas hydrate joint industry project, Cruise report.
  18. Collett, T. S. et al., 2008, National Gas Hydrate Program Expedtion 01 Initial report, Dir. Gen. of Hydrocarbons, Minist. of Pet. and Nat. Gas. New Delhi.
  19. Collett, T. S., and Lee, M. W., 2011, Well log characterization of natural gas hydrates, SPWLA 52nd Annual Logging Symposium, May 14-18.
  20. Cook, A. E., 2010, Gas hydrate-filled fracture reservoirs on continental margin: Ph.D. dissertation, Columbia University.
  21. Cook, A. E., Goldberg, D., and Kleinberg, R. L., 2008, Fracture-controlled gas hydrate systems in the northern Gulf of Mexico, Marine and Petroleum Geology, 25, 932-941. https://doi.org/10.1016/j.marpetgeo.2008.01.013
  22. Cook, A. E., Anderson, B. I., Malinverno, A., Mrozewski, S., and Goldberg, D. S., 2010, Electrical anisotropy due to gas hydrate-filled fractures, Geophysics, 75, 173-185. https://doi.org/10.1190/1.3506530
  23. Ecker, C., Dvorkin J., and Nur, A., 1998, Sediments with gas hydrate: internal structure from seismic AVO, Geophys. Prospect, 51, 1659-1669.
  24. Ecker, C., Dvorkin, J., and Nur, A., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data, Geophysics, 65, 565-573. https://doi.org/10.1190/1.1444752
  25. Ellis, D. V., and Singer, J. M., 2007, Well logging for earth scientists, 2nd edition, Springer.
  26. Erickson, S. N., and Jarrard, R. D., 1998, Porosity/formation-factor relationships for high-porosity siliciclastic sediments from Amazon Fan, Geophys. Res. Lett. 25, 2309-2312. https://doi.org/10.1029/98GL01777
  27. Expedition 311 Scientists, 2005, Cascadia maring gas hydrate, IODP Pre. Rept., 311, doi:10:2204/iodp.pr.311.2005.
  28. Fofonoff, 1985, Physical properties of seawater, J. Geophys. Res., 90, 3332-3342. https://doi.org/10.1029/JC090iC02p03332
  29. Fujii, T., Saeki, T., Kobayashi, T., Inamori, T., Hayashi, M., Takano, O., Takayama, T., Kawasaki, T., Nagakubo, S., Nakamizu, M., and Yokoi, K., 2008, Resource assessment of methane hydrate in the eastern Nankai Trough, QTC 19310, the 2008 Offshore Technology Conference, Texas, USA.
  30. Gei, D., and Carcione, M., 2003, Acoustic properties of sediments saturated with gas hydrate, free-gas sand water, Geophys. Prospect, 51, 141-157. https://doi.org/10.1046/j.1365-2478.2003.00359.x
  31. Goldberg, D., 2000, In situ log properties of gas hydrate bearing sediments, In: Max, M.D. (ed.) Natural gas Hydrate in oceanic and permafrost environments, Kluwer Academic Publishers, Netherlands.
  32. Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A., and Collett, T., 1999, Elastic-wave in marine sediments with gas hydrates: effective medium modeling, Geophysical Research Letters, 26, 2021-2024. https://doi.org/10.1029/1999GL900421
  33. Hesse, R., and Harrison, W. E., 1981, Gas hydrates (clathrates) causing pore-water freshening and oxygen-isotope fractionaton in deep-water sedimentary sections of terrigenous continental margins, Earth Planet. Sci. Lett., 55, 453-462. https://doi.org/10.1016/0012-821X(81)90172-2
  34. Horozal, S., Lee, G. H., Yi, B. Y., Yoo, D. G., Park, K. P., Lee, H. Y., Kim, W. S., Kim, H. J., and Lee, K. S., 2009, Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector, Marine Geology, 258, 126-138. https://doi.org/10.1016/j.margeo.2008.12.004
  35. Hyndman, R. D., Yuan, T., and Morgan, K., 1999, The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data, Earth Planet. Sci. Lett., 172, 167-177. https://doi.org/10.1016/S0012-821X(99)00192-2
  36. Jakobsen, M., Hudson, J. A., Minshull, T. A., and Singh, S. C., 2000, Elastic properties of hydrate-bearing sediments using effective medium theory, J. Geophys. Res., 105, 561-577. https://doi.org/10.1029/1999JB900190
  37. Kim, G. Y., Yi, B. Y., Yoo, D. G., Ryu, B. J., and Riedel, M. 2011, Evidence of gas hydrate from downhole logging data in the Ulleung Basin, East Sea, Marine and Petroleum Geology, 28, 1979-1985. https://doi.org/10.1016/j.marpetgeo.2011.01.011
  38. Kleinberg, R. L., Faum, C., Griffin, D. D., Brewer, P. G., Malby, G. E., Peltzer, E. T., and Yesinowski, J. P., 2003, Deep Sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability, J. Geophys. Res., 108, 2508, doi:10.1029/2003/B002389.
  39. Kleinberg, R. L., Flaum, C., and Collett, T. S., 2005, Magnetic resonance log of JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: gas hydrate saturation, growth habit, relative permeability, In: Dallimore, S.R., Collett, T .S. (Eds.), Scientific Results from the Mallik 2000 Gas Hydrate Production Research Well Program, Geological Survey of Canada Bulletin, 585, p.10. Mackenzie Delta, Northwest Territories, Canada.
  40. Kvenvolden, K. A., 1993, A primer on gas hydrates, in The Future of Energy Gases, edited by D.G. Howell, U.S. Geol. Surv. Prof. Pap., 1570, 555-561.
  41. Lee, J. H., Baek, Y. S., Ryu, B. J., Ridel, M., and Hyndman, R. D., 2005, A seismic survey to detect natural gas hydrate in the East Sea of Korea, Marine Geophysical Researches, 26, 51-59. https://doi.org/10.1007/s11001-005-6975-4
  42. Lee, M. W., Hutchinson, D. R., Dillon, W. P., Miller, J. J., Agena, W. F., and Swift, B. A., 1993, Method of estimating the amount of in-situ gas hydrates in deep marine sediments, Marine and Petroleum Geology, 10, 496-506.
  43. Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P., 1996, Seismic velocities for hydrate-bearing sediments using weighted equation, J. Geophys. Res., 101, 20347-20358. https://doi.org/10.1029/96JB01886
  44. Lee, M. W., and Collett, T. S., 2006, Gas hydrate and free gas saturation estimated from velocity logs on Hydrate Ridge, offshore Oregon, USA, In: Trehu, A. M., Bohrmann, G., Torress, M. E., and Colwell, F. S. (Eds.), Proc. ODP, Sci. Results, 204, 1-25.
  45. Lee, M. W., and Collett, T. S., 2009, Gas hydrate saturation estimated from fracture reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India, J. Geophys. Res., 114, B07102, doi:10.1029/2008JB006237.
  46. Lee, M. W., and Collett, T. S. 2011, In-situ gas hydrate saturations estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Marine and Petroleum Geology, 28, 439-449. https://doi.org/10.1016/j.marpetgeo.2009.06.007
  47. Luthi, S. M., 2001, Geophysical well logs, Springer, New York, 373 pp.
  48. Malinverno, A., Kastner, M., Torres, M. E., and Wortmann, U. G., 2008, Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia Margin (IODP Exp. 311), J. Geophys. Res., 113, B08103, doi:10.1029/2008/B005702.
  49. Murray, D., Kleinberg, R. L., Sinha, B. Fukuhara, M., Osawa, O., Endo, T., and Namikawa, T., 2006, Formation evaluation of gas hydrate reservoirs, Petrophysics, 47, 129-137.
  50. NGHP, 2006, Indian national gas hydrate programs, Expedition 01 initial reports, Directorate General of Hydrocarbons, Ministry of Petroleum and Natural Gas (India).
  51. Ojha, M., Sain, K., and Minshull, T. A., 2010, Assement of gas hydrate saturation in the Makran accretionary prism using the offset dependence of seismic amplitude, Geophysics, 75, C1-C6 https://doi.org/10.1190/1.3315861
  52. Pearson, C. F., Halleck, P. M., McGulre, P. L., Hermes, R., and Mathews, M., 1983, Natural gas hydrate; A review of in situ properties, J. Phys. Chem., 87, 4180-4185. https://doi.org/10.1021/j100244a041
  53. Reidel, M., Collett, T. S., and Hyndman, R. D., 2005, Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity, Geological Survey of Canada (open file 4934), 36p.
  54. Ryu, B. J., Riedel, M., Kim, J. H., Hyndman, R. D., Lee, Y. J., Chung, B. H., and Kim, I. S., 2009, Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea, Marine and Petroleum Geology, 26, 1483-1498. https://doi.org/10.1016/j.marpetgeo.2009.02.004
  55. Santamarina, J., and Ruppel, C., 2008, The impact of hydrate saturation on sands, silts, and clay: Proceedings of the 6th International Conference on Gas Hydrate, Https://circle.ubc.ca/handle/2429/2325, accessed June 2010.
  56. Schultheiss, P., Holland, M., and Roberts, J., 2008, Pressure core analysis The keystone of a gas hydrate investigation: Proceedings of the 6th International Conference on Gas Hydrates, https://circle.ubc.ca/handle/2429/1201, accessed June 2010.
  57. Shankar, U., and Riedel, M., 2011, Gas hydrate saturation in the Krishna-Godavari basin from P-wave velocity and electrical resistivity logs, Marine and Petroleum Geology, 28, 1768-1778. https://doi.org/10.1016/j.marpetgeo.2010.09.008
  58. Sloan, E. D., 1990, Clathrate hydrate of natural gases, Marcel Dekker, New York, 641p.
  59. Spangenberg, E., 2001, Modeling of the influence of gas hydrate content on the electrical properties of porous sediments, J. of Geophys. Res., 106, 6535-6548. https://doi.org/10.1029/2000JB900434
  60. Sun, Y. F., Goldberg, D., Collett, T., and Hunter, R., 2011, High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Marine and Petroleum Geology, 28, 450-459. https://doi.org/10.1016/j.marpetgeo.2010.03.001
  61. Timur, A., 1968, Velocity of compressional waves in porous media at permafrost temperature, Geophysics, 41, 621-645.
  62. Ussler, W., and Paull, C. K., 1995, Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition: Geo-Marine Letters, 15, 37-44. https://doi.org/10.1007/BF01204496
  63. Ussler, W., and Paull, C. K., 2001, Ion exclusion associated with marine gas hydrate deposits, In: Natural Gas Hydrate: occurrence, distribution, and detection, AGU Monograph, 124, 41-65.
  64. Waxman, M. N., and Smiths, L. J. M., 1968, Electrical conductivities in oil-bearing shaly sands, Society of Petroleum Engineers Journal, 8, 107-122. https://doi.org/10.2118/1863-A
  65. Wood, A. B., A textbook of Sound, 578pp. Macmillan, New York, 1941.
  66. Wyllie, M. R. J., Gregory, A. R., and Gardner, L. W., 1956, Elastic wave velocities in heterogeneous and porous media, Geophysics, 21, 41-70. https://doi.org/10.1190/1.1438217
  67. Yi, B. Y., Lee, G. H., Horozal, S., Yoo, D. G., Ryu, B. J., Kang, N. K., Lee, S. R., and Kim, H. J., 2011, Qualtitaive assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin, East Sea (Japan Sea), Marine and Petroleum Geology, 28, 1953-1966. https://doi.org/10.1016/j.marpetgeo.2010.12.001