참고문헌
- Y. J. Cho, Y. P. Fang and N. J. Huang, Algorithms for systems of nonlinear variational inequalities, J. Korean Math. Soc. 41(2004), 489-499. https://doi.org/10.4134/JKMS.2004.41.3.489
- Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Commun. Appl. Nonlinear Anal. 11(1)(2004), 93-101.
-
Y. P. Fang, N. J. Huang and H. B. Thompson, A new system of variational inclusions with (H;
${\eta}$ )-monotone operators in Hilbert spaces, Comput. Math. Appl. 49(2005), 365-374. https://doi.org/10.1016/j.camwa.2004.04.037 - N. J. Huang, Generalized nonlinear variational inclusions with noncompact valued map- pings, Appl. Math. Lett. 9(3)(1996), 25-29. https://doi.org/10.1016/0893-9659(96)00026-2
-
H. Y. Lan, Y. J. Cho and R. U. Verma, On nonlinear relaxed cocoercive variational inclusions involving (A;
${\eta}$ )-accretive mappings in Banach spaces, Comput. Math. Appl. 51(2006), 1529-1538. https://doi.org/10.1016/j.camwa.2005.11.036 - S. B. Nadler, Muti-valued contraction mappings, Pacific J. Math. 30(1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
-
Jian-Wen Peng and Dao-Li Zhu, Three-step iterative algorithm for a system of set-valued variational inclusions with (H;
${\eta}$ )-monotone operators, Nonlinear Anal. 68(2008), 139-153. https://doi.org/10.1016/j.na.2006.10.037 - R. U. Verma, Projection methods, algorithms and a new system of nonliear variational inequalities, Comput. Math. Appl. 41(2001), 1025-1031. https://doi.org/10.1016/S0898-1221(00)00336-9
- H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16(12)(1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
- W. Y. Yan, Y. P. Fang and N. J. Huang, A new system of set-valued variational inclusions with H-monotone operators, Math. Inequal. Appl. 8(3)(2005), 537-546.