References
- H.B. Gu, H.J. Jiang, Z. D. Teng, Mean square exponential stability in high-order stochastic impulsive neural networks with time-varying delays, J. Appl. Math. Comput. 1-2(2009), 151-170.
- Q.Y. Li, S.Q. Gan, Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps, J. Appl. Math. Comput. (2010) DOI:10.1007/s12190-010-0449-9
- J.H. Zhang, P. Shi, J.Q. Qiu, Non-fragile guaranteed cost control for uncertain stochastic nonlinear time-delay systems, Journal of the Franklin Institute, 7(2009), 676-690.
-
Y. Chen, A.K. Xue, and R.Q. Lu, Robust
$H_{\infty}$ guaranteed cost control for uncertain stochastic delayed systems, Acta Tutomat. Sinica, 8(2008), 900-906. -
S.Y. Xu, P. Shi, Y.M. Chu, Y. Zou, Robust stochastic stabilization and
$H_{\infty}$ control of uncertain neutral stochastic time-delay systems, J. Math. Anal. Appl., 1(2006), 1-16. -
J.Q. Qiu, H.K. He, P. Shi, Robust Stochastic Stabilization and
$H_{\infty}$ Control for Neutral Stochastic Systems with Distributed Delays, Circuits Syst. Signal Process, 2(2011), 287-301. - S.Y. Xu, Y.M. Chu, J.W. Lu, Y. Zou, Exponential Dynamic Output Feedback Controller Design for Stochastic Neurtal Systems With Distributed Delays, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 3(2006), 540-548.
- L.R. Huang, X.R. Mao, Delay-Dependent Exponental Stability of Neutral Stochastic Delay Systems, IEEE Trans. Automat. Control, 9(2009), 147-152.
-
N. Berman, U. Shaked,
$H_{\infty}$ -like control for nonlinear stochastic systems, Syst. and Control Lett., 3(2006),247-257. -
T. Senthilkumar, P. Balasubramaniam, Delay-dependent robust
$H_{\infty}$ control for uncertain stochastic T-S fuzzy stystems with time-varying state and input delays, J. Syst. Sci., 5(2011):877-887. -
W.H. Zhang, H.S. Zhang, B.S. Chen, Stochastic
$H_2/H_{\infty}$ control with dependent noise: Finite horizon case, Automatica, 1(2006),1891-1898. -
W.H. Zhang, G. Feng, Nonlinear stochastic
$H_2/H_{\infty}$ control with (x, u, v)-dependent noise: infinite horizon case, IEEE Trans. Automat. Control,5(2008),1323-1328. -
T. Hou, W.H. Zhang, H.J. Ma, Finite horizon
$H_2/H_{\infty}$ control for discrete-Time stochastic systems with Markovian jumps and multiplicative noise, IEEE Trans. Automat. Control, 5(2010), 1185-1191. -
F. Yang, Z.D. Wang, D.W.C. Ho, Robust mixed
$H_2/H_{\infty}$ for a class of nonlinear stochastic systems, IEE Proc. Control Theory Appl., 2(2006), 175-184. - H. R. Karimi, Robust Delay-Dependent Hinf Control of Uncertrain Markovian Jump Systems with Mixed Neutral, Discrete and Distributed Time-Delays, IEEE Trans. Circuits and Systems I, 8(2011), 1910-1923.
- H. R. Karimi et al, Robust mixed H2/Hinf delayed state-feedback control of neutral delay systems with time-varying delays' Asian Journal of Control, 5(2008), 569-580.
- X.R. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 2008.
- B. Xu, Stability robustness bounds for linear systems with multiple time-varying delayed perturbations, Int. J. Syst. Sci., 12(1997), 1311-1317.
- K.Q. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Birkhauser: Boston, MA, 2003.
- Y.Y. Wang, L.H. Xie, E. de Souza Carlos , Robust control of a class of uncertain nonlinear systems, Syst. Control & Lett., 2(1992), 139-149.
- P. Gahinet, A. Nemirovski, A. Laub, M. Chialali, LMI Control Toolbox Userars Guide, The Mathworks, Massachusetts, 1995.