DOI QR코드

DOI QR Code

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua (College of Automation Science and Engineering, South China University of Technology, Department of Mathematics, South Cina Agricultural University) ;
  • Deng, Feiqi (College of Automation Science and Engineering, South China University of Technology) ;
  • Wan, Anhua (School of Mathematics and Computational Science, Sun Yat-Sen University)
  • Received : 2011.10.04
  • Accepted : 2011.11.14
  • Published : 2012.09.30

Abstract

In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Keywords

References

  1. H.B. Gu, H.J. Jiang, Z. D. Teng, Mean square exponential stability in high-order stochastic impulsive neural networks with time-varying delays, J. Appl. Math. Comput. 1-2(2009), 151-170.
  2. Q.Y. Li, S.Q. Gan, Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps, J. Appl. Math. Comput. (2010) DOI:10.1007/s12190-010-0449-9
  3. J.H. Zhang, P. Shi, J.Q. Qiu, Non-fragile guaranteed cost control for uncertain stochastic nonlinear time-delay systems, Journal of the Franklin Institute, 7(2009), 676-690.
  4. Y. Chen, A.K. Xue, and R.Q. Lu, Robust $H_{\infty}$ guaranteed cost control for uncertain stochastic delayed systems, Acta Tutomat. Sinica, 8(2008), 900-906.
  5. S.Y. Xu, P. Shi, Y.M. Chu, Y. Zou, Robust stochastic stabilization and $H_{\infty}$ control of uncertain neutral stochastic time-delay systems, J. Math. Anal. Appl., 1(2006), 1-16.
  6. J.Q. Qiu, H.K. He, P. Shi, Robust Stochastic Stabilization and $H_{\infty}$ Control for Neutral Stochastic Systems with Distributed Delays, Circuits Syst. Signal Process, 2(2011), 287-301.
  7. S.Y. Xu, Y.M. Chu, J.W. Lu, Y. Zou, Exponential Dynamic Output Feedback Controller Design for Stochastic Neurtal Systems With Distributed Delays, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 3(2006), 540-548.
  8. L.R. Huang, X.R. Mao, Delay-Dependent Exponental Stability of Neutral Stochastic Delay Systems, IEEE Trans. Automat. Control, 9(2009), 147-152.
  9. N. Berman, U. Shaked, $H_{\infty}$-like control for nonlinear stochastic systems, Syst. and Control Lett., 3(2006),247-257.
  10. T. Senthilkumar, P. Balasubramaniam, Delay-dependent robust $H_{\infty}$ control for uncertain stochastic T-S fuzzy stystems with time-varying state and input delays, J. Syst. Sci., 5(2011):877-887.
  11. W.H. Zhang, H.S. Zhang, B.S. Chen, Stochastic $H_2/H_{\infty}$ control with dependent noise: Finite horizon case, Automatica, 1(2006),1891-1898.
  12. W.H. Zhang, G. Feng, Nonlinear stochastic $H_2/H_{\infty}$ control with (x, u, v)-dependent noise: infinite horizon case, IEEE Trans. Automat. Control,5(2008),1323-1328.
  13. T. Hou, W.H. Zhang, H.J. Ma, Finite horizon $H_2/H_{\infty}$ control for discrete-Time stochastic systems with Markovian jumps and multiplicative noise, IEEE Trans. Automat. Control, 5(2010), 1185-1191.
  14. F. Yang, Z.D. Wang, D.W.C. Ho, Robust mixed $H_2/H_{\infty}$ for a class of nonlinear stochastic systems, IEE Proc. Control Theory Appl., 2(2006), 175-184.
  15. H. R. Karimi, Robust Delay-Dependent Hinf Control of Uncertrain Markovian Jump Systems with Mixed Neutral, Discrete and Distributed Time-Delays, IEEE Trans. Circuits and Systems I, 8(2011), 1910-1923.
  16. H. R. Karimi et al, Robust mixed H2/Hinf delayed state-feedback control of neutral delay systems with time-varying delays' Asian Journal of Control, 5(2008), 569-580.
  17. X.R. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 2008.
  18. B. Xu, Stability robustness bounds for linear systems with multiple time-varying delayed perturbations, Int. J. Syst. Sci., 12(1997), 1311-1317.
  19. K.Q. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Birkhauser: Boston, MA, 2003.
  20. Y.Y. Wang, L.H. Xie, E. de Souza Carlos , Robust control of a class of uncertain nonlinear systems, Syst. Control & Lett., 2(1992), 139-149.
  21. P. Gahinet, A. Nemirovski, A. Laub, M. Chialali, LMI Control Toolbox Userars Guide, The Mathworks, Massachusetts, 1995.