참고문헌
- 윤충식. 나노물질의 측정전략의 주요 쟁점. 한국환경보건학회지 2011; 37 (1): 73-79
- 하주현, 신용철, 이승철, Samuel Y.Paik, 김부욱 등. 탄소나노튜브 표면 처리 실험실 종사자의 공기중 나노입자 노출에 관한 연구. 한국환경보건학회지 2010; 36 (5): 343-350
- Buonanno G, Morawska L, Stabile L. Exposure to welding particles in automotive plants. J Aerosol Sci 2011; 42: 295-304 https://doi.org/10.1016/j.jaerosci.2011.02.003
- Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W. Ultrafine particles : mechanisms of lung injury. Phil Trans R Soc Lond A 2000; 358: 2741-2749 https://doi.org/10.1098/rsta.2000.0681
- European Commission. New nanomaterial definition. 2011. availble from: URL:http://europa.eu/rapid/pressReleases Action.do?reference=IP/11/1202
- Han JH, Lee EJ, Lee JH, So KP, Lee YH et al. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 2008; 20: 741-749 https://doi.org/10.1080/08958370801942238
- International Commission on Radiological Protection. Human respiratory tract model for radiological protection. Annals. ICRP 1994;24(1-3). ICRP publication 66
- International Organization for Standardization. ISO TR 27628. Nanotechnologies - workplace atmosphere ultrafine, nanoparticle and nano-structured aerosolinhalation exposure characterization and assessment, ISO, Geneva, 2007
- Klot SV, Wolke G, Tuch T, Heinrich J, Dockery DW, et al. Increased asthma medication use in association with ambient fine and ultrafine particle. Eur Respir J 2002; 20: 691-702 https://doi.org/10.1183/09031936.02.01402001
- Kreying WG, Semmler M, Erbe F, Mayer P, Takenaka S, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 2002; 65 (20): 1513-1530 https://doi.org/10.1080/00984100290071649
- Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU et al. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol 2010; 22: 369-381 https://doi.org/10.3109/08958370903367359
- Maynard AD, Zimmer AT. Evaluation of grinding aerosols in terms of alveolar dose: The significance of using mass, surface area and number metrics. Ann Occup Hyg 2002; 46(supplement 1): 315-319
- Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 2004; 16: 437-445 https://doi.org/10.1080/08958370490439597
- Pekkanen J, Peter A, Hoek G, Tiittanen P, Brunekreef B, et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease. The exposure and risk assessment for fine and ultrafine particle particle in ambient air (ULTRA) study. Circulation 2002; 106: 933-938 https://doi.org/10.1161/01.CIR.0000027561.41736.3C
- Peter TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 2006; 50: 249-257
- Pfefferkorn FE, Bello D, Haddad G, Park JY, Powell M, et al. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Ann Occup Hyg 2010; 54 (5): 486-503 https://doi.org/10.1093/annhyg/meq037
- Ramachandran G, Ostraat M, Evans DE, Methner MM, O'Shaughnessy P, D'Arcy J et al. A strategy for assessing workplace exposure to nanomaterials. J Occup Environ Hyg 2011; 8: 673-685 https://doi.org/10.1080/15459624.2011.623223
- Stephenson D, Seshadri G, Veranth JM. Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. AIHAJ 2003; 64: 516-521
- Zimmer AT, Baron PA, Biswas P. The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. J Aerosol Sci 2002; 33: 519-531 https://doi.org/10.1016/S0021-8502(01)00189-6