무기물계 폐기물로 합성한 제올라이트의 코발트, 니켈, 구리 이온의 회수 성능

The Recovery Performance of Co, Ni, and Cu Ions Using Zeolites Synthesized from Inorganic Solid Wastes

  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Lee, ChangHan (Department of Environmental Adminstration, Catholic University of Pusan)
  • 발행 : 2012.09.30

초록

In this study, zeolites were synthesized by a fusion and a hydrothermal methods using a coal fly ash and a waste catalyst. The recovery performance of metal ions on the structure property of synthetic zeolites was evaluated as comparing the adsorption kinetics (Lagergen 2nd order model) and isotherm (Langmuir model) of $Co^{2+},\;Ni^{2+}$, and $Cu^{2+}$ ions. The synthetic zeolites (Z-C1 and Z-W5) were similarly assigned to XRD peaks in a reagent grade Na-A zeolite (Z-WK : $Na_{12}Al_{12}Si_{12}O_{48}\;27.4H_2O$). Adsorption rates of Z-W5 and Z-C1 were in the order of $Cu^{2+}\;>\;Co^{2+}\;>\;Ni^{2+}\;and\;Ni^{2+}\;>\;Cu^{2+}\;>\;Co^{2+}$, respectively. They had influenced upon structure properties of zeolite. Selectivities of metal ions and maximum equilibrium adsorption capacities, $q_{max}$, in Z-C1 and Z-W5 were in the order of $Ni^{2+}$ (127.9 mg/g) > $Cu^{2+}$ (94.7 mg/g) > $Co^{2+}$ (82.6 mg/g) and $Cu^{2+}$ (141.3 mg/g) > $Co^{2+}$ (122.2 mg/g) > $Ni^{2+}$ (87.6 mg/g), respectively. The results show that the synthetic zeolites, Z-C1 and Z-W5, are able to recover metal ions selectively in wastewater.

키워드

참고문헌

  1. 안상우, 유지영, 최재영, 박재우(2009). 반응표면분석법을 이용한 hydroxyapatite 첨가 활성탄에서의 Cd 흡착특성에 관한 연구, 한국물환경학회지, 25(6), pp. 943-950.
  2. 이창한, 박종원(2011). 울산지역 공단에서 발생되는 비산재를 이용한 제올라이트 합성. 대한환경공학회지, 33(5), pp. 301-306.
  3. 이창한, 서정호(2009). 석탄계 비산재로 합성한 제올라이트를 이용한 코발트 이온의 흡착 특성, 대한환경공학회지, 31(11), pp. 941-946.
  4. 임굉(1999). Zeolite를 이용한 폐수중의 중금속이온의 흡착, 한국물환경학회지, 15(3), pp. 437-448.
  5. 정팔진, 곽동희, 이재옥(2000). Bone Charcoal에 의한 폐수중의 중금속 흡착특성, 한국물환경학회지, 16(4), pp. 555-563.
  6. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Progress in Energy and Combustion Science, 36(3), pp. 327-363.
  7. Apiratikul, R. and Pavasant, P. (2008). Sorption of $Cu^{2+}$, $Cd^{2+}$, and $Pb^{2+}$ using modified zeolite from coal fly ash, Chemical Engineering Journal, 144(2), pp. 245-258. https://doi.org/10.1016/j.cej.2008.01.038
  8. Hsu, T. C., Yu, C. C, and Yeh, C. M. (2008). Adsorption of $Cu^{2+}$ from water using raw and modified coal fly ashes, Fuel, 87(7), pp. 1355-1359. https://doi.org/10.1016/j.fuel.2007.05.055
  9. Hui, K. S., Chao, C. Y. H., and Kot, S. C. (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, Journal of Hazardous Materials, 127(1-3), pp. 89-101. https://doi.org/10.1016/j.jhazmat.2005.06.027
  10. Kim, J. K. and Lee, H. D. (2009). Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash, Journal of Industrial & Engineering Chemistry, 15(5), pp. 736-742. https://doi.org/10.1016/j.jiec.2009.09.055
  11. Mishra, T. and Tiwari, S. K. (2006). Studies on sorption properties of zeolite derived from Indian fly ash, Journal of Hazarous Materials, 137(1), pp. 299-303. https://doi.org/10.1016/j.jhazmat.2006.02.004
  12. Molina, A. and Poole, C. (2004). A comparative study using two methods to produce zeolites from fly ash, Minerals Engineering, 17(2), pp. 167-173. https://doi.org/10.1016/j.mineng.2003.10.025
  13. Motsi, T., Rowson, N. A., and Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite, International Journal of Mineral Processing, 92(1-2), pp. 42-48. https://doi.org/10.1016/j.minpro.2009.02.005
  14. Moutsatsou, A., Stamatakis, E., Hatzitzotzia, K., and Protonotarios, V. (2006). The utilization of Ca-rich and Ca-Si-rich fly ashes in zeolites production, Fuel, 85(9), pp. 657-663. https://doi.org/10.1016/j.fuel.2005.09.008
  15. Murayama, N., Yamamoto, H., and Shibata, J. (2002). Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, International Journal of Mineral Processing, 64(1), pp. 1-17. https://doi.org/10.1016/S0301-7516(01)00046-1
  16. Ouki, S. K., and Kavannagh, M. (1999). Treatment of metalscontaminated wastewaters by use of natural zeolites, Water Science and Technology, 39(10-11), pp. 115-122. https://doi.org/10.1016/S0273-1223(99)00260-7
  17. Tanaka, H. and Fujii, A. (2009). Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process, Advanced Powder Technology, 20(5), pp. 473-479. https://doi.org/10.1016/j.apt.2009.05.004
  18. Tanaka, H., Sakai, Y., and Hino, R. (2002). Formation of Na-A and -X zeolites from waste solutions in conversion of coal fly ash to zeolites, Materials Research Bulletin, 37(11), pp. 1873-1884. https://doi.org/10.1016/S0025-5408(02)00861-9
  19. Treacy, M. M. J. and Higgins, J. B. (2001). Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, Amsterdam.
  20. Qiu, W. and Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chemical Engineering Journal, 145(3), pp. 483-488. https://doi.org/10.1016/j.cej.2008.05.001