The Comparison of Grid Resolutions using EFDC in Saemangeum Reservoir

격자 해상도에 따른 EFDC의 새만금호 모의

  • Shin, Yu-Ri (Korea Chemicals Management Association) ;
  • Jang, Jeongryeil (Korea Rural Community Corporation Rural Research Institute) ;
  • Choi, Jung-Hoon (Korea Rural Community Corporation Rural Research Institute) ;
  • Cho, Young Kweon (Korea Rural Community Corporation Rural Research Institute)
  • 신유리 (한국화학물질관리협회) ;
  • 장정렬 (한국농어촌공사 농어촌연구원) ;
  • 최정훈 (한국농어촌공사 농어촌연구원) ;
  • 조영권 (한국농어촌공사 농어촌연구원)
  • Published : 2012.09.30

Abstract

This study area was Saemangeum Reservoir in Korea and the applied model was Environmental Fluid Dynamics Code(EFDC). It was the same as the scenarios to the boundary and initial conditions except the resolutions of the model grids. The resolutions were about 800 and 2,000 cells. It was considered scenario 1 and 2. The model was performed to simulate the water temperature, salinity, water quality parameters such as dissolved oxygen(DO), chemical oxygen demand(COD), total nitrogen(T-N), and total phosphorus(T-P) at 2008. The simulation results of the two scenarios were reflected in the trend of observed data tolerably. However, water flow, water temperature, and salinity showed high confidence level at the scenario 1. The water quality items did not present high confidence level at the scenario 1 because which concept was considered to biochemical and physical processes. This result shows that grid resolution has an influence on the water transport and the effect is reflected directly shallow and narrow water area. But, the selection of grid resolution should be considered the purpose of model simulation and the process of target items.

Keywords

References

  1. 김현경, 이혜원, 최정현, 박석순(2007). 해안 구조물 건설에 따른 조간대 및 희석률 변화에 관한 모델 연구, 대한환경공학회지, 29(10), pp. 1106-1113.
  2. 서승원, 이화영, 유상철(2010). 방조제 완공에 따른 호내부 수질변화 모의, 한국해안.해양공학회논문집, 22(4), pp.258-271.
  3. 신유리, 정지연, 최정훈, 정광욱(2012). HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의, 수질보전 한국물환경학회지, 28(3), pp. 384-393.
  4. 이동주(2011). EFDC 활용 길잡이, 구미서관, pp. 272.
  5. 이충일, 이종희, 김동선(2007). 한국 서해에서 수온 및 염분에 미치는 기상 인자의 영향, 해양환경안전학회, 13(1), pp. 29-37.
  6. 장이현, 김상우, 고우진, 야마다 게이꼬, 서영상(2007). 동중국해 북부해역 수온, 염분의 분포 변동 특성, 한국환경과학회 봄 학술발표회지, 한국환경과학회, pp. 331-335.
  7. 전지혜, 정세웅, 박형석, 장정렬(2011). 새만금호 수질예측 모의를 위한 EFDC 모형의 평가, 수질보전 한국물환경학회지, 27(4), pp. 445-460.
  8. 전지혜, 정세웅(2012). 새만금호 3차원 수리, 수질모델 (EFDC)의 수치격자 민감도 분석, 수질보전 한국물환경학회지, 28(1), pp. 26-37.
  9. 정희영, 류인구, 정세웅(2009). EFDC모형을 이용한 새만금호 내 해수유통량에 따른 오염물질 혼합 변화 모의, 한국농공학회논문집, 51(6), pp. 53-62.
  10. 한국농어촌공사(2011). 새만금 수질예측모델 연구, SH-01-11-04-10, pp. 9-30.
  11. 한지영, 김상현, 김남원(2003). 토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구, 한국수자원학회논문집, 36(2), pp. 251-261.
  12. Hamrick, J. M. (1992). A Three Dimensional Environmental Filed Dynamics Computer Code; Theoretical and Computational Aspects, Special Report. The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, pp. 52-60.
  13. Janssen, P. H. M and Heuberger, P. S. C. (1995). Calibration of Process-Oriented Models, Ecological Modeling, 83, pp. 55-66. https://doi.org/10.1016/0304-3800(95)00084-9
  14. Kang, Y. Q. and Jin, M. S. (1984a). Annual Variation of Salinity in the Neighbouring Seas of Korea, The Journal of Oceanological Society of Korea, 19(2), pp. 105-110.
  15. Kang, Y. Q. and Jin, M. S. (1984b). Seasonal Variation of Surface Temperatures in the Neighbouring Seas of Korea, The Journal of Oceanological Society of Korea, 19(1), pp. 31-35.
  16. Park, G., Jung, H. S., Kim, H. S., and Ahn, S. M. (2005). Three-Dimensional Hydrodynamic-Eutrophication Model (HEM- 3D): Application to Kwang-Yang Bay, Korea, Marine Environmental Research, 60, pp. 171-193. https://doi.org/10.1016/j.marenvres.2004.10.003
  17. Park, G., Kuo, A. Y., Shen, J., and Hamrick, J. M. (2000). A Three-Dimentional Hydrodynamic-Eutrophication Model (HEM- 3D): Description of Water Quality and Sediment Process Submodels. School of Marine Science Virginia Institute of Marine Science College of William and Mary Gloucester Point, VA 23062. Revised by Tetra Tech, Inc., June 2000, pp. 1-1-3-5.
  18. Watson, Fred G., Grayson, Rodger B., Vertessy, Robert A., and McMahon, Thomas A. (1998). Large-Scale Distribution Modeling and the Utility of Detailed Ground Data, Hydrological Processes, 12, pp. 873-888. https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<873::AID-HYP660>3.0.CO;2-A
  19. Zhang, W. and Montgomery, D. R. (1994). Digital Elevation Model Grid Size, Landscape Representation, and Hydrologic Simulations, Water Resources Research, 30(4), pp. 1019- 1028. https://doi.org/10.1029/93WR03553