Oxygen Supersaturation in Korean Streams as a Stress Factor to Fish

어류 스트레스 요인으로서 우리나라 하천의 산소과포화 실태

  • Lee, Saeromi (Department of Environmental Science, Kangwon National University) ;
  • Lee, JaeYong (Department of Environmental Science, Kangwon National University) ;
  • Choi, Jaeseok (Environmental Research Institute at Kangwon National University) ;
  • Kim, Sunjung (Department of Environmental Science, Kangwon National University) ;
  • Ahn, Buyoung (Korea Institute of Science and Technology Information) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University)
  • Published : 2012.03.30

Abstract

Abnormal dissolved oxygen concentration in aquatic habitat, both depletion and supersaturation, can be stress factor to aquatic animals. In this study the nationwide distribution of oxygen supersaturation was analyzed for three categories of streams (43 urban streams, 15 rural streams, and 14 forest streams) by using monitoring network data of the Korean Ministry of Environment. From the distribution analysis 30% of urban streams showed hyperoxic condition of eutrophic level, while no forest stream showed hyperoxic condition. The physiological effect of hyperoxia on fish was examined using two species of fish Zacco koreanus, which resulted in higher concentration of a stress hormone (cortisol) in fish exposed to hyperoxic concentration (196%) of oxygen. This study shows that hyperoxic condition is ubiquitous in urban and rural Korean streams, and it can be a stress factor to aquatic animals.

Keywords

References

  1. 김은희(2007). 수질 연속 자동 측정을 통한 도시하천의 스트레스 요인 규명, 서울대학교 대학원, pp. 1-197.
  2. 이은형, 서동일, 황현동, 윤진혁, 최재훈(2006). 도시하천에서의 어류 폐사 원인 분석 1 - 일반조사 및 실험, 상하수도학회지, 20, pp. 573-584.
  3. 이재용, 자히둘 이슬람, 신명선, 정성민, 김범철(2006). 인북천에서 부착조류 현존량의 시.공간적 변동, 수질보전 한국물환경학회지, 26(5), pp. 797-803.
  4. 환경부(2009). 어류폐사발생지역의 환경조사(2), pp. 46-238.
  5. 환경부(2010). 한강수계 오염총량관리계획수립 지침, pp. 46-47.
  6. Bae, K. S., Kim, G. B., Kil, H. K., Yu, B. T., and Kim, M. Y. (2002). Long-term Changes of the Fish Fauna and Community Structure in the Jungrang Creek, Seoul, Korea, Korean Journal of Limnology, 35, pp. 63-70.
  7. Braunbeck, T., Hinton, D. E., and Streit, B. (1998). Fish Ecotoxicology, Birkhauser Verlag, Basel; Boston, pp. 203-220.
  8. Colt, J. (1984). Computation of Dissolved Gas Concentrations in Water as Functions of Temperature, Salinity, and Pressure, American Fisheries Society, Bethesda, Md. pp. 66-82.
  9. Colt, J., Bouck, G., Fidler, L. (1986). Review of Current Literature and Research on Gas Supersaturation and Gas Bubble Trauma, US Dept. of Energy, Bonneville Power Administration, Division of Fish and Wildlife, Portland, Or. pp. 10.
  10. Dodds, W. K. (2007). Trophic State, Eutrophication and Nutrient Criteria in Streams, Trends in Ecology & Evolution, 22, pp. 669-676. https://doi.org/10.1016/j.tree.2007.07.010
  11. Edsall, D. A. and Smith, C. E. (1990). Performance of Rainbow Trout and Snake River Cutthroat Trout Reared in Oxygen-supersaturated Water, Aquaculture, 90, pp. 251-259. https://doi.org/10.1016/0044-8486(90)90249-M
  12. Espmark, A. M. and Baeverfjord, G. (2009). Effects of Hyperoxia on Behavioural and Physiological Variables in Farmed Atlantic Salmon (Salmo salar) Parr, Aquaculture International, 17, pp. 341-353. https://doi.org/10.1007/s10499-008-9206-6
  13. Horne, A. J. and Goldman, C. R. (2001). Limnology, Mcgraw-Hill Companies Inc, [S.l.]. pp. 115-132
  14. Kramer, D. L. (1987). Dissolved Oxygen and Fish Behavior, Environmental Biology of Fishes, 18, pp. 81-92. https://doi.org/10.1007/BF00002597
  15. Kushlan, J. A. (1979). Temperature and Oxygen in an Everglades Alligator Pond, Hydrobiologia, 67, pp. 267-271. https://doi.org/10.1007/BF00023182
  16. Lugg, A. and Fisheries, N. S. W. (2000). Fish kills in NSW, Fisheries NSW, Cronulla, NSW. pp. 4.
  17. Mallya, Y. J. (2007). The Effects of Dissolved Oxygen on Fish Growth in Aquaculture, pp. 14-15.
  18. Martinez-Porchas, M., Martinez-Cordova, L. R., and Ramos-Enriquez, R. (2009). Cortisol and Glucose: Reliable Indicators of Fish Stress? PanAmerican, Journal of Aquatic Sciences, 4, pp. 158-178.
  19. Renfro, W. C. (1963). Gas-bubble Mortality of Fishes in Galveston Bay, Texas, Transactions of the American Fisheries Society, 92, pp. 320-322. https://doi.org/10.1577/1548-8659(1963)92[320:GMOFIG]2.0.CO;2
  20. Ritola, O., Tossavainen, K., Kiuru, T., Lindstrom-Seppa, P., and Molsa, H. (2002). Effects of Continuous and Episodic Hyperoxia on Stress and Hepatic Glutathione Levels in One-summer-old Rainbow Trout (Oncorhynchus mykiss), Journal of Applied Ichthyology, 18, pp. 159-164. https://doi.org/10.1046/j.1439-0426.2002.00324.x
  21. Robarts, R. D., Waiser, M. J., Arts, M. T., and Evans, M. S. (2005). Seasonal and Diel Changes of Dissolved Oxygen in a Hypertrophic Prairie Lake, Lakes & Reservoirs: Research and Management, 10, pp. 167-177. https://doi.org/10.1111/j.1440-1770.2005.00273.x
  22. U.S. EPA. (2004). Assabet River Total Maximum Daily Load for Total Phosphorus. DEP, DWM TMDL Report MA82B-01-2004-01, pp. 67.
  23. Vanlandeghem, M., Wahl, D., and Suski, C. (2010). Physiological Responses of Largemouth Bass to Acute Temperature and Oxygen Stressors, Fisheries Management and Ecology, 17, pp. 414-425. https://doi.org/10.1111/j.1365-2400.2010.00740.x
  24. Woodbury, L. A. (1942). A Sudden Mortality of Fishes Accompanying a Supersaturation of Oxygen in Lake Waubesa, Wisconsin, Transactions of the American Fisheries Society, 71, pp. 112-117. https://doi.org/10.1577/1548-8659(1941)71[112:ASMOFA]2.0.CO;2