분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성

Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR

  • 이장희 ((주)건양기술공사) ;
  • 강호 (충남대학교 환경공학과)
  • Lee, Jang-Hee (Kun Yang Engineering) ;
  • Kang, Ho (Department of Environmental Engineering, Chungnam National University)
  • 발행 : 2012.01.30

초록

This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

키워드

참고문헌

  1. 김효수, 김예진, 이성학, 문태섭, 최재훈, 김창원(2008). 활성 슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석, 대한환경공학회지, 30(2), pp. 199-206.
  2. 박노백, 최우영, 윤애화, 전항배(2009). MBR 단일 반응조에서 용존산소 농도에 따른 동시 질산화-탈질반응(SND)의 영향, 한국환경농학회지, 28(4), pp. 371-377.
  3. 박종일, 이태진(2006). 단일 반응기를 이용한 동시 질산.탈질에 관한 연구, 대한환경공학회지, 29(2), pp. 220-228.
  4. 배철호(2008). 소규모 공공하수처리시설의 운영실태 및 처리 방안 개선에 관한 연구, 석사학위논문, 인하대학교, pp. 5-6.
  5. 서인석, 김홍석, 김연권, 김지연(2006). 교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거, 수질보전 한국물환경학회지, 22(2), pp. 203-208.
  6. 신응배, 이두진, 이상엽, 김연권(2001). 혐기조의 인방출조건에 미치는 nitrate, 유기물, 미생물농도사이의 상관관계, 춘계학술연구발표회 논문집(1), 대한환경공학회, 이화여자대학교, pp. 81-82.
  7. 이두진, 김홍수(2008). 충청남도 하수관거 현황 및 운영관리 개선방안, 충남발전연구원, pp. 26.
  8. 이호식, Mavinic, D. S. (2001). Full-Scale 연속유입식 SBR 공정을 이용한 소규모 하수처리장에서 질소제거, 대한토목학회지, 21(2-B), pp. 147-155.
  9. 허형우, 신경숙, 박승국, 박종부, 최은주, 강 호(2003). 혐기조의 인 방출 최적화를 위한 영향인자 평가, 대한환경공학회지, 25(11), pp. 1382-1387.
  10. 환경부(2009). 2008 하수도통계, pp. 3-5.
  11. Giedre, V. and Algirdas, B. M. (2005). Investigation into Biological Nutrient Removal from Wastewater, Journal of Environment Engineering and Landscape Management, 8(4), pp. 188-181.
  12. Peter, J., Jespersen, K., and Henze, M. (1993). Biological Phosphorus Uptake under Anoxic and Aerobic Conditions, Water Research, 27(4), pp. 617-624.
  13. Qingjuan, M., Fenglin, Y., Lifen, L., and Fengang, M. (2008). Effects of COD/N Ratio and DO Concentration on Simultaneous Nitrification and Denitrification in an Airlift Internal Circulation Membrane Bioreactor, Journal of Environment Sciences, 20(8), pp. 933-939.
  14. Zhao, H. W., Mavinic, D. S., Oldham, W. K., and Koch, F. A. (1998). Factos Affecting Phosphorus Removal in a Two-stage Intermittent Aeration Process Treating Domestic Sewage, Water Science and Technology, 38(1), pp. 115-122.