DOI QR코드

DOI QR Code

경제성 확보를 위한 빗물이용시설의 규모 산정 및 민감도 분석

Evaluation of Tank Capacity of Rainwater Harvesting System to Secure Economic Feasibility and Sensitivity Analysis

  • 문정수 (한국건설기술연구원 수자원환경연구본부) ;
  • 김하나 (한국건설기술연구원 수자원환경연구본부) ;
  • 박종빈 (한국건설기술연구원 수자원환경연구본부) ;
  • 이정훈 (한국건설기술연구원 수자원환경연구본부) ;
  • 김이호 (한국건설기술연구원 수자원환경연구본부)
  • 발행 : 2012.04.16

초록

Rainwater harvesting systems (RWHS), one of measures for on site rainwater management, have been promoted by laws, regulations and guidelines and have been increased. However, more evaluation of economic feasibility on RWHS is still needed due to seasonal imbalance of rainfall and little experiences and analysis on design and operation of RWHS. In this study, we investigated tank capacity of RWHS to secure economic validity considering catchment area and water demand, which is affected by building scale. Moreover, sensitivity analysis was performed to examine the effect of design factors, cost items and increase rate of water service charge on economic feasibility. The BCR (benefit cost ratio) is proportional to the increase in tank capacity. It is increased steeply in small tank capacity due to the effect of cost and, since then, gently in middle and large tank capacity. In case of 0.05 in the rate of tank volume to catchment area and 0.005 in water demand to catchment area, BCR was over one from the tank capacity of 160 $m^{3}$ taking into account of private benefits and from the tank capacity of 100 $m^{3}$ taking into account of private and public benefits. Sensitivity analysis shows that increase of water demand can improve BCR values with little cost so that it is needed to extend application of rainwater use and select a proper range of design factor. Decrease of construction and maintenance cost reduced the tank volume to secure economic validity. Finally, increase rate of water service charge had considerable impact on economic feasibility.

키워드

참고문헌

  1. 김이호, 이상호, 남숙현, 이정훈, 김하나 (2011) $RainCity^{TM}$사용자 지침서, 수자원의 지속적 확보기술개발 사업단, 서울.
  2. 김이호, 김영민, 이상호, 이정훈 (2005) MUSIC을 이용한 공동주택단지 우수저류침투시설 설계, 대한환경공학회 2005 춘계학술연구발표회 논문집, pp.370-373.
  3. 김영민, 이상호, 이정훈, 김이호 (2008) Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정, 상하수도학회지, 22(2), pp.233-238.
  4. 문정수, 한무영 (2009) S 주상복합단지 빗물이용시설의 경제성 평가, 대한건축학회논문집 계획계, 25(12), pp.173-181.
  5. 문정수, 한명실, 기동원, 한무영 (2005) 하수관거 침수 방지를 위한 빗물 저류조 용량 설계, 2005년 공동춘계학술발표회 논문집, pp.420-423.
  6. 부산광역시 법무행정 서비스, http://www.busan.go.kr/law/
  7. 서울특별시 법무행정 서비스, http://legal.seoul.go.kr/
  8. 서울특별시 상수도사업본부, http://water.seoul.go.kr/
  9. 심명필 (2000) 수자원 경제성 분석 입문 (1), 한국수자원학회지, 33(3), pp.111-120.
  10. 인천광역시 자치법규 정보 서비스, http://legal.incheon.go.kr/
  11. 한국은행 경제통계시스템, http://ecos.bok.or.kr/
  12. 홍원화, 배선현, 최미영 (2005) 대구월드컵경기장 빗물이용시설 도입에 따른 경제성 평가에 관한 연구, 대한건축학회논문집 계획계, 21(8), pp.243-250
  13. 환경부 (2010) 상수도통계.
  14. 환경부 (2009) 상수도통계.
  15. 환경부 (2004) 중수도 활성화를 위한 제도개선 T/F팀 구성․ 운영보고서.
  16. Bill Hicks, P.E. (2008) A Cost-Benefit Analysis of Rainwater Harvesting at Commercial Facilities in Arlington County, Virginia, Masters project, Duke University, Virginia, USA.
  17. Han, M.Y., Mun, J.S. (2008) Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks, Water Science & Technology, 56(11), PP.73-79.
  18. Kim, R.H., Lee, S.H., Lee, J.H. and Gee, J.S. (2007) Thermal Properties of Water-Absorbing and Surface Modified Porous Pavements, Material Science Forum, 691, pp.913-916.
  19. Liang, Xiao and Meine Pieter van Dijk (2011) Economic and financial analysis on rainwater harvesting for agricultural irrigation in the rural areas of Beijing, Resources, Conservation and Recycling , 55(11), pp.1100-1108. https://doi.org/10.1016/j.resconrec.2011.06.009
  20. Rahman, A., Dbais, J. and Imteaz, M. (2010) Sustainability of Rainwater Harvesting Systems in Multistorey Residential Buildings, American J. of Engineering and Applied Sciences 3(1), pp.73-82. https://doi.org/10.3844/ajeassp.2010.73.82

피인용 문헌

  1. Achieving cost-efficient diversification of water infrastructure system against uncertainty using modern portfolio theory vol.20, pp.3, 2018, https://doi.org/10.2166/hydro.2018.240