심혈관계 이식물용 생분해성 고분자의 세포 독성 및 급성 염증반응

Cell Toxicity and Acute Inflammatory Response of Biodegradable Polymers for Cardiovascular Implants

  • 서성호 (한국과학기술연구원 의공학연구소 생체재료연구단) ;
  • 강성남 (한국과학기술연구원 의공학연구소 생체재료연구단) ;
  • 박상민 (한국과학기술연구원 의공학연구소 생체재료연구단) ;
  • 최지연 (고려대학교 생명공학원) ;
  • 정윤기 (한국과학기술연구원 의공학연구소 생체재료연구단) ;
  • 김익환 (고려대학교 생명공학원) ;
  • 한동근 (한국과학기술연구원 의공학연구소 생체재료연구단)
  • Seo, Seong Ho (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Kang, Sung Nam (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Park, Sang Min (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Choi, Jiyeon (Graduate School, Department of Biotechnology, Korea University) ;
  • Joun, Yoon Ki (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology) ;
  • Kim, Ik Hwan (Graduate School, Department of Biotechnology, Korea University) ;
  • Han, Dong Keun (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology)
  • 발행 : 2012.12.01

초록

Biodegradable polymers have been used to develop cardiovascular prostheses such as vascular grafts and stents. However, thrombosis, inflammation, and restenosis that are associated with implants are still major obstacles for the use of these devices. The lack of endothelial cell (EC) lining (endothelialization) and the response of immune systems to the stents have been associated with these complications. In addition, several clinical studies have focused on the early markers or initiators of the inflammatory response in coronary stenting. The clinical reports demonstrated that some inflammatory markers, C-reactive protein (CRP), interlukin-6 (IL-6), and interlukin-1 (IL-1) exhibited relative rise in 10 minutes after inserting stent. Therefore, we have examined the cell viability and the expression levels of IL-6 after treating smooth muscle cell (SMC) with the degradation product of poly(L-lactide) (PLLA) and poly(D,L-lactide-co-glycolide) (PLGA) containing sirolimus (SRL) drug.

키워드

참고문헌

  1. T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. and D. I. Simon, "Vascular Inflammation and Repair," JACC., 4, 1057-1066 (2011).
  2. G. Niccoli and R. A. Montone, "The Evolving Role of Inflammatory Biomarkers in Risk Assessment After Stent Implantation," JACC., 56, 1783-1793 (2010). https://doi.org/10.1016/j.jacc.2010.06.045
  3. C. Stettler, S. Wandel, S. Allemann, et al., "Outcomes associated with drug-eluting and bare-metal stents: a collaborative network metaanalysis," Lancet, 370, 937-948 (2007). https://doi.org/10.1016/S0140-6736(07)61444-5
  4. R. G. Agustina, R. Bibiana, R. G. Gaston, and E. R. Alfredo, "Advantages and disadvantages of biodegradable platforms in drug eluting stents," WJC, 3, 84-92 (2011). https://doi.org/10.4330/wjc.v3.i3.84
  5. Y. Goueffic, S. Potter-Perigo, and C. K. Chan, "Sirolimus blocks the accumulation of hyaluronan (HA) by arterial smooth muscle cells and reduces monocyte adhesion to the ECM," Atherosclerosis, 195, 23-30 (2007). https://doi.org/10.1016/j.atherosclerosis.2006.11.023
  6. M. Hilker, M. Buerke, and M. Guckenbiehl, "Rapamycin reduces neointima formation during vascular injury," VASA, 32, 10-13 (2003). https://doi.org/10.1024/0301-1526.32.1.10
  7. J. Park, H. Ha, H. J. Ahn et al., "Sirolimus inhibits platelet-derived growth factor-induced collagen synthesis in rat vascular smooth muscle cells," Transplant Proc., 37, 3459-3462 (2005). https://doi.org/10.1016/j.transproceed.2005.09.066
  8. R. Wessely, A. Kastrati, and A. Schomig, "Late restenosis in patients receiving a polymer-coated sirolimus-eluting stent," Ann. Intern. Med., 143, 392-394 (2005). https://doi.org/10.7326/0003-4819-143-5-200509060-00119
  9. R. Virmani, F. Liistro, G. Stankovic, et al., "Mechanism of late instent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans," Circulation, 106, 2649-2651 (2002). https://doi.org/10.1161/01.CIR.0000041632.02514.14
  10. J. E. Sousa, M. A. Costa, A. C. Abizaid, B. J. Rensing, et al., "Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound followup," Circulation, 104, 2007-2011 (2001). https://doi.org/10.1161/hc4201.098056
  11. M. C. Morice, P. W. Serruys, J. E Sousa, J. Fajadet, E. B. Hayashi, M. Perin, et al., "A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization," N. Eng. J. Med. 346, 1773-1780 (2002). https://doi.org/10.1056/NEJMoa012843
  12. J. W. Moses, M. B. Leon, J. J Popma, P. J Fitzgerald, D. R. Holmes, et al., "Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery," N. Engl. J Med., 349, 1315-1323 (2003). https://doi.org/10.1056/NEJMoa035071
  13. E. Grube, S. Silber, K. E Hauptmann, R. Mueller, L. Buellesfeld, U. Gerckens, and M. E. Russell, "TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slowrelease paclitaxel-eluting stent for de novo coronary lesions," Circulation, 107, 38-42 (2003). https://doi.org/10.1161/01.CIR.0000047700.58683.A1
  14. A. Colombo, J. Drzewiecki, A. Banning, E. Grube, K. Hauptmann, S. Silber, D. Dudek, S. Fort, F. Schiele, K. Zmudka, G. Guagliumi, and M. E. Russell, "Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel eluting stents for coronary artery lesions," Circulation, 108, 788-794 (2003). https://doi.org/10.1161/01.CIR.0000086926.62288.A6