항균성 고분자의 개발에 관한 진전동향

Advances on the Development of Antimicrobial Polymers

  • 안세정 (한국과학기술정보연구원 정보분석센터) ;
  • 성용길 (한국과학기술정보연구원 ReSEAT 프로그램)
  • Ahn, Sejung (Information Analysis Center, Korea Institute of Science and Technology Information) ;
  • Sung, Yong Kiel (ReSEAT Program, Korea Institute of Science and Technology Information)
  • 발행 : 2012.12.01

초록

The antimicrobial polymers are very interested in the field of medical devices and healthcares. In the present paper, advances on the development of antimicrobial polymers for biomedical applications have been reviewed on the state of papers published in the literatures for 11 years from 2000 to 2011. The total numbers of 1,435 papers are classified on the basis of 63 nations worldwide, 1,326 institutions of all nations, and highly cited papers to be selected in the research area of antimicrobial polymers. The qualitative and quantitative index for leading nations, organizations, and authors have been identified and analyzed for the selection of highly cited papers in the research field of antimicrobial polymers. The highly cited publications on antimicrobial polymers have been selected and listed for investigators who work in the future development of more useful antimicrobial polymers for the medical applications.

키워드

참고문헌

  1. 성용길, "스마트 고분자 히드로겔 개발 동향," 한국과학기술 정보연구원 심층정보분석보고서, 교육과학기술부, 서울 (2011).
  2. 안세정, 성용길, "고분자 구조설계에 의한 항균성 부여 기술 동향," 한국과학기술정보연구원 심층정보분석보고서, 교육과학기술부, 서울 (2012).
  3. C. H. Yoon, "Antibiotics Effect of Synthetic Polyacrylic Acid Containing Sulamethazine," J. Korean Oil Chem. Soc., 18(2), 180-185 (2001).
  4. K. M. Kim, S. D. Kong, C. H. Yoon, Y. Y. Kim, H. S. Lee, "Antibiotic Activity of PVA Blending Films Using Chitosan," J. Korean Oil Chem. Soc., 17(3), 198-202 (2000).
  5. A. Shukla, P. T. Hammond, "Antimicrobial Delivery from Degradable Polymer Coatings," 2010 AIChE Annual Meeting, 11/9/2010, 17:05-17:25 (2010).
  6. B. Raloff, D. Janet, High Beam Research, "Antibiotic Polymer Prostheses," Sci. News, Oct. 8, 1988; http://www.highbeam.com
  7. B. Raloff, D. Janet, High Beam Research, "Antibacterial Plasma Polymer Coatings Developed," Intern. Newsletters, Oct. 8, (1988); http://www.highbeam.com/doc/1G1-234251054.html
  8. BASF Chemical Company, Engineering Plastics, Germany.
  9. F. L. Mou-Ying, B. Saul, "Antibiotic-Polymer Compositions," EPO Patent EP0293885 (5 Patents), Abbott Lab., European Patent Office (EPO), (1988-12-07).
  10. P. Gao, X. Nie, M. Zou, Y. Shi, G. Cheng, "Recent Advances in Materials for Extended-Release Antibiotic Delivery System," J. Antibiotics, 64, 625-634 (2011). https://doi.org/10.1038/ja.2011.58
  11. 이방래, 여운동, 이준영, 이창환, 권오진, 문영호, "계량정보분석시스템으로서의 KnowledgeMatrix 개발," 한국콘텐츠학회논문지, 8(1), 168-181 (2007).
  12. H. J. Lee, J. S. Kang, B. Y. Goh, "Bibliometric Indicators to identify Core Research Institutions in Green Technology (Dye-Sensitized Solar Cell)," Proceeding of Convergence Technology & Information Convergence, pp. 95-102 (2009).
  13. A. Melaiye, Z. H. Sun, K. Hindi, A. Milsted, D. Ely, D. H. Reneker, C. A. Tessier, W. J. Youngs, "Silver(I)-imidazole Cyclophane Gemdiol Complexes Encapsulated by Electrospun Tecophilic Nanofibers: Formation of Nanosilver Particles and Antimicrobial Activity," J. Amer. Chem. Soc., 127, 2285-2291 (2005). https://doi.org/10.1021/ja040226s
  14. S. Young, M. Wong, Y. Tabata, A. G. Mikos, "Gelatin as a Delivery Vehicle for the Controlled Release of Bioactive Molecules," J. Controlled Rel., 109, 256-262 (2005). https://doi.org/10.1016/j.jconrel.2005.09.023
  15. S. B. Lee, R. R. Koepsel, S. W. Morley, K. Matyjaszewski, Y. J. Sun, A. J. Russell, "Permanent, Nonleaching Antibacterial Surfaces. 1. Synthesis by Atom Transfer Radical Polymerization," Biomacromolecules, 5, 877-883 (2004). https://doi.org/10.1021/bm034352k
  16. C. Weidenmaier, J. F. Kokai-Kun, S. A. Kristian, T. Chanturiya, H. Kalbacher, M. Gross, G. Nicholson, B. Neumeister, J. J. Mond, A. Peschel, "Role of Teichoic Acids in Staphylococcus aureus Nasal Colonization, a Major Risk Factor in Nosocomial Infections," Nature Medicine, 10, 243-246 (2004). https://doi.org/10.1038/nm991
  17. S. Quintavalla, L. Vicini, "Antimicrobial Food Packaging in Meat Industry," Meat Science, 62, 373-379 (2002). https://doi.org/10.1016/S0309-1740(02)00121-3
  18. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship, H. J. Reid, "Silver Nanoparticles and Polymeric Medical Devices: a New Approach to Prevention of Infection," J. Antimicrobial Chemotherapy, 54, 1019-1023 (2004). https://doi.org/10.1093/jac/dkh478
  19. J. C. Tiller, S. B. Lee, K. Lewis, A. M. Klibanov, "Polymer Surfaces Derivatized with Poly(vinyl-N-hexylpyridinium) Kill Airborne and Waterborne Bacteria," Biotechnol. Bioeng., 79, 465-470 (2002). https://doi.org/10.1002/bit.10299
  20. C. Vuong, S. Kocianova, J. M. Voyich, Y. F. Yao, E. R. Fischer, F. R. DeLeo, M. Otto, "A Crucial Role for Exopolysaccharide Modification in Bacterial Biofilm Formation, Immune Evasion, and Virulence," J. Biological Chem., 279, 5481-5489 (2004).
  21. N. Sakai, S. Matile, "Anion-mediated Transfer of Polyarginine across Lliquid and Bilayer Membranes," J. Amer. Chem. Soc., 125, 14348-14352 (2003). https://doi.org/10.1021/ja037601l
  22. S. Y. Kwak, S. H. Kim, S. S. Kim, "Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-fouling. 1. Preparation and Characterization of TiO2 Nanoparticle Self-assembled Aromatic Polyamide Thin-film-composite (TFC) Membrane," Environmental Sci. Technol., 35, 2388-2392 (2001). https://doi.org/10.1021/es0017099
  23. C. Z. S. Chen, N. C. Beck-Tan, P. Dhurjati, T. K. van Dyk, R. A. LaRossa, S. L. Cooper, "Quaternary Ammonium Functionalized Poly(propylene imine) Dendrimers as Effective Antimicrobials: Structure-activity Studies," Biomacromolecules, 1, 473-478 (2000). https://doi.org/10.1021/bm0055495
  24. K. Nomiya, S. Takahashi, R. Noguchi, S. Nemoto, T. Takayama, M. Oda, "Synthesis and Characterization of Water-soluble Silver(I) Complexes with L-histidine (H(2)his) and (S)-(-)-2-pyrrolidone-5-carboxylic Acid (H(2)pyrrld) Showing a Wide Spectrum of Effective Antibacterial and Antifungal Activities. Crystal Structures of Chiral Herical Polymers," Inorganic Chem., 39, 3301-3309 (2000). https://doi.org/10.1021/ic990526o