Recent Advances in a Dual-ligand Approach for Cancer Targeting

이중 리간드를 이용한 암 표적지향의 최근 연구동향

  • Bae, Jin Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Ki Dong (Department of Molecular Science and Technology, Ajou University)
  • 배진우 (아주대학교 분자과학기술학과) ;
  • 박기동 (아주대학교 분자과학기술학과)
  • Published : 2012.09.01

Abstract

For the past few decades, great advances have been made in cancer treatment using targeted drug delivery systems that utilize specific receptor-ligand interactions. Some targeted nanocarriers have shown clinically promising results. Considering cancer microenvironments that are very complex and dynamic, however, nanocarrier-based drug delivery platforms decorated with a single ligand that can specifically bind to receptors over-expressed on cancer cells may cause adverse effects because the ligand can be also recognized by normal cells. This review mainly focuses on a dual-ligand approach of nanocarriers that simultaneously exploits two different types of cancer targeting ligands, which can improve cancer targetability of the nanocarriers. We will first discuss general features of current nanocarrier platforms in brief and then introduce the recent achievement based on a dual-ligand approach.

Keywords

References

  1. T. Lammers, W. E. Hennink, and G. Storm, "Tumour-targeted nanomedicines: principles and practice," Br. J. Cancer, 99, 392-397 (2008). https://doi.org/10.1038/sj.bjc.6604483
  2. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, "Nanocarriers as an emerging platform for cancer therapy," Nat. Nanotechnol., 2, 751-760 (2007). https://doi.org/10.1038/nnano.2007.387
  3. S. Hong, P. R. Leroueil, I. J. Majoros, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl, "The binding avidity of a nanoparticlebased multivalent targeted drug delivery platform," Chem. Biol., 14, 107-115 (2007). https://doi.org/10.1016/j.chembiol.2006.11.015
  4. Q. Xu, Y. Liu, S. Su, W. Li, C. Chen, and Y. Wu, "Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles," Biomaterials, 33, 1627-1639 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.012
  5. R. Pasqualini, E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti, "Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis," Cancer. Res., 60, 722-727 (2000).
  6. L. Milane, Z. Duan, and M. Amiji, "Development of EGFRtargeted polymer blend nanocarriers for combination paclitaxel/ lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells," Mol. Pharm., 8, 185-203 (2011). https://doi.org/10.1021/mp1002653
  7. M. Saad, O. B. Garbuzenko, E. Ber, P. Chandna, J. J. Khandare, V. P. Pozharov, and T. Minko, "Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?," J. Control. Release, 130, 107-114 (2008). https://doi.org/10.1016/j.jconrel.2008.05.024
  8. H. F. Liang, C. T. Chen, S. C. Chen, A. R. Kulkarni, Y. L. Chiu, M. C. Chen, and H. W. Sung, "Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer," Biomaterials, 27, 2051-2059(2006). https://doi.org/10.1016/j.biomaterials.2005.10.027
  9. M. E. Davis, "The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic," Mol. Pharm., 6, 659-668 (2009). https://doi.org/10.1021/mp900015y
  10. F. Gu, L. Zhang, B. A. Teply, N. Mann, A. Wang, A. F. Radovic- Moreno, R. Langer, and O. C. Farokhzad, "Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers," Proc. Natl. Acad. Sci. U. S. A., 105, 2586-2591 (2008). https://doi.org/10.1073/pnas.0711714105
  11. J. A. Barreto, W. O'Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia, "Nanomaterials: applications in cancer imaging and therapy," Adv. Mater., 23, H18-40 (2011). https://doi.org/10.1002/adma.201100140
  12. A. Z. Wang, R. Langer, and O. C. Farokhzad, "Nanoparticle delivery of cancer drugs," Annu. Rev. Med., 63, 185-198 (2012). https://doi.org/10.1146/annurev-med-040210-162544
  13. S. P. Egusquiaguirre, M. Igartua, R. M. Hernandez, and J. L. Pedraz, "Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research," Clin. Transl. Oncol., 14, 83-93 (2012). https://doi.org/10.1007/s12094-012-0766-6
  14. S. C. Abeylath, S. Ganta, A. K. Iyer, and M. Amiji, "Combinatorialdesigned multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery," Acc. Chem. Res., 44, 1009-1017 (2011). https://doi.org/10.1021/ar2000106
  15. J. M. Saul, A. V. Annapragada, and R. V. Bellamkonda, "A dualligand approach for enhancing targeting selectivity of therapeutic nanocarriers," J. Control. Release, 114, 277-287 (2006). https://doi.org/10.1016/j.jconrel.2006.05.028
  16. X. Li, H. Zhou, L. Yang, G. Du, A. S. Pai-Panandiker, X. Huang, and B. Yan, "Enhancement of cell recognition in vitro by dualligand cancer targeting gold nanoparticles," Biomaterials, 32, 2540-2545 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.031
  17. Y. Nie, D. Schaffert, W. Rodl, M. Ogris, E. Wagner, and M. Gunther, "Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene therapy," J. Control. Release, 152, 127-134 (2011). https://doi.org/10.1016/j.jconrel.2011.02.028
  18. J. Grill, V. W. Van Beusechem, P. Van Der Valk, C. M. Dirven, A. Leonhart, D. S. Pherai, H. J. Haisma, H. M. Pinedo, D. T. Curiel, and W. R. Gerritsen, "Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids," Clin. Cancer. Res., 7, 641-650 (2001).