References
- J. M. Wozney, V. Rosen, A. J. Celeste, et al., "Novel regulators of bone formation: molecular clones and activities," Science, 242, 1528-1534 (1988).
- R. G. Geesink, N. H. Hoefnagels and S. K. Bulstra, "Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect," J. Bone Joint Surg., 81B, 710-718 (1999).
- H. Yamagiwa, N. Endo, K. Tokunaga, T. Hayami, H. Hatano and H. E. Takahashi, "In vivo bone-forming capacity of human bone marrow-derived stromal cells is stimulated by recombinant human bone morphogenetic protein-2," J. Bone Miner. Metab., 19, 0-28 (2001).
- J. Fang, Y. Y. Zhu, E. Smiley, et al., "Stimulation of new bone formation by direct transfer of osteogenic plasmid genes," Proc. Natl. Acad. Sci. USA, 93, 5753-5758 (1996).
- D. Gazit, G. Turgeman, P. Kelley, et al., "Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy," J. Gene. Med., 1, 121-133 (1999).
- I. Kazhdan, D. Rickard and P. S. Leboy, "HLH transcription factor activity in osteogenic cells," J. Cell Biochem., 65, 1-10 (1997).
- W. S. Jang, J. R. Kim, W. J. Sohn, et al., "Osteoinduction using recombinant bone morphogenetic protein-7 gene," J. of Korean Orthop. Assoc., 39, 598-606 (2004).
- M. C. Chang, T. Ikoma, M. Kikuchi, J. Tanaka, "The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon," J. Mater. Sci. Mater. Med.,13, 993-997 (2002).
- M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka, "Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo," Biomaterials, 22, 1705-1711 (2001).
- P. Chomczynski, N. Sacchi, "Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction," Anal. Biochem., 162, 156-159 (1987).
- A. R. Gazdag, J. M. Lane, M. Glaser and R. A. Forster, "Alternatives to autogenous bone graf: Efficacy and indication", J. Am. Acad. Orthop. Surg., 3, 1-8 (1995).
- C. J. Damien, J. R. Parsons, "Bone graft and bone graft substitutes:a review of current technology and applications," J. Appl. Biomater., 2, 187-208 (1991).
- E. Liljensten, C. Larsson, P. Thomsen, G. Blomqvist, J. M. Hirsch and C. Wedenberg, "Studies of the healing of bone grafts, and the incorporation of titanium implants in grafted bone: an experimental animal model," J. Materials Science, 9, 535-541 (1998).
- T. D. Alden, P. Varady, D. F. Kallmes, J. A. Jane Jr and G. A. Helm, "Bone morphogenetic protein gene therapy," Spine, 27 (16 Suppl 1), S87-S93 (2002).
- A. S. Breitbart, D. A. Grande, J. M. Mason, M. Barcia, R. T. James Tand Grant, "Gene-enhanced tissue engineering: Applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene," Ann. Plast. Surg., 42, 488-495 (1999).
- A. Minamide, M. Kawakami, H. Hashizume, T. Sakata Tamaki, "Evaluation of carriers of bone morphogenetic protein for spinal fusion," Spine, 26, 933-939 (2001).
- J. M. Mason, A. S. Breitbart, M. Barcia, D. Porti, R. G. Pergolizzi and D. A. Grande, "Cartilage and bone regeneration using gene enhanced tissue engineering," Clin. Orthop, 379(Suppl), S171-178 (2000).
- J. Y. Kim, B. Y. Kim and S. H. Kim, "A comparative study on regeneration of bone defects after the grafts of demineralized bone matrix and hydroxyapatite," Korean Journal of Anatomy, 31(1), 9-20 (1998).
- S. H. Kim, H. J. Kim and M. S. Kim et al., "Regeneration of artificial bone defects by allograft of demineralized bone and bone particles in rabbits," Korean Journal of Anatomy, 34(2), 193-206 (2001).
- L. C. Abbott, E. R. Schottstaedt, J. B. Saunders, et al., "The evaluation o cortical and cancellous bone as grafting material," J. Bone Joint. Surg., 29, 381-386 (1947).
- V. M. Goldberg, "Bone graft options and biologic substitutes. The biology of bone graft," Orthopedics, 26, 923-924 (2003).
- H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, A. I. Caplan, "Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use," Bone Marrow Transplant., 16, 557 (1995).
- S. D. Cook, J. E. Dalton, E. H. Tan, T. S. Whitecloud, D. C. Rueger, "In vivo evaluation of recombinant human osteogenic protein implants as a bone graft substitute for spinal fusions," Spine, 19, 165524 (1994).
- E. A. Wang, V. D. Rosen, J. S. Alessandro, et al., "Recombinant human bone morphogenetic protein induces bone formation," Proc. Natl. Acad. Sci. USA, 87, 2220 (1990).
- S. C. Chang, H. Chuang, Y. R. Chen, et al., "Cranial repair using BMP-2 gene engineered bone marrow stromal cells," Surg. Res., 119(1), 85-91 (2004).
- T. E. Grenga, J. E. Zins, T. W. Bauer, "The role of vascularization of coralline hydroxyaptite," Plast. Reconstr. Surg., 84, 245-249 (1989).
- H. Schliephake, F. W. Neukam, D. Klosa, "Influence of poredimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study," Int. J. Oral Maxillofac. Surg., 20, 53-58 (1991).
- D. C. Tancred, B. A. McCormack, A. J. Carr, "A synthetic bone implant macroscopically identical to cancellous bone," Biomaterials, 19, 2303-2311 (1998).
- D. Y. Suh, S. D. Boden, J. Louis-Ugbo, et al., "Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate," Spine, 27, 353-360 (2002).
- M. Bohner, "Calcium orthophophates in medicine: from ceramics to calcium phosphate cements," Injury, 31(Suppl. 4), 37-47 (2000).
- J. O. Hollinger, J. Brekke, "Role of bone substitutes," Clin. Orthop., 324, 55-65 (1996).
- M. K. Nair, U. P. Nair, A. Seyedain, et al., "Correlation of tuned aperture computed tomography with conventional computed tomography for evaluation of osseous healing in calvarial defects," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 103(2), 267-73 (2007).