Ship Collision Behaviors of Offshore Wind Tower on Bucket Foundation

버켓기초를 가진 해상풍력타워의 선박충돌 거동

  • Lee, Gye-Hee (Department of Ocean & Plant Construction Engineering, Mokpo National Maritime University) ;
  • Park, Jun-Seok (Division of Inspection, Korea Infrastructure Safety Corporation) ;
  • Hong, Kwan-Young (Department of Ocean & Plant Construction Engineering, Mokpo National Maritime University)
  • Published : 2012.06.30

Abstract

In this paper, the various parametric study of collisions between a offshore wind tower and vessels were performed to estimate the ultimate behaviors of the bucket foundation and the tower. Additionally, the stability of the foundation and the energy dissipation capacities of the tower were analyzed. The results shows that the collision energy of the vessel was mainly dissipated by the plastic deformation energy of the tower and the foundation system shown enough bearing capacity against to this severe loading condition.

본 논문에서는 해상풍력발전타워와 선박충돌에 대한 다양한 매개변수에 해석을 수행하여 선박충돌시 버켓파일로 지지된 기초부와 상부타워의 극한하중에 대한 거동을 분석하였다. 또한 충돌에너지의 변화에 따른 버켓기초의 안정성 여부 및 풍력타워의 에너지 소산능력에 대해 파악하였다. 해석결과 선박이 충돌에너지는 주로 타워의 소성변형에너지에 의해 소산 되었으며 이러한 극한상태의 하중에도 기초부는 충분한 지지력을 보이는 것으로 나타났다.

Keywords

References

  1. AASHTO (1991). Guide Specification and Commentary for Vessel Collision Design of Highway Bridges.
  2. American Petroleum Institute (API) (2000). API Recommended Practice 2A - WSD (RP 2A-WSD), Twenty-First Edition.
  3. Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D.L., Beskos, D.E. (2002). "Static, seismic and stability analyses of a prototype wind turbine steel tower." Engineering Structures, Vol.24, pp.1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4
  4. Breton, S.-P., Moe, G. (2009). "Status, plans and technologies for offshore wind turbines in Europe and North America" Renewable Energy, Vol.34, pp.646-654. https://doi.org/10.1016/j.renene.2008.05.040
  5. Honshu-Sikokyu Connection Bridge Organization (HSCBO) (1980). Design Guide of Multi-cell Type Vessel Collision Proctective Structures. (in Japanesse)
  6. Kim, D.H., Chang, W.I., Kim, S.Y., Shin, S.R., Lim, J.S., Yun, J.H. (2009). "Numerical analsys of offshore wind power system foundation.'' Journal of Korean Society of Marine Engineering, Vol.33, No.2, pp.355-361. https://doi.org/10.5916/jkosme.2009.33.2.355
  7. Korea Society of Ground Engineering (KSGE) (2002). Deep Foundation (Revised). (in Korean)
  8. Lavassas, I., Nikolaidis, G., Zervas, P., Efthimiou, E., Doudoumis, I.N., Baniotopoulos, C.C. (2003). "Analysis and design of the prototype of a steel 1-MW wind turbine tower." Engineering Structures, Vol.25, pp.1097-1106. https://doi.org/10.1016/S0141-0296(03)00059-2
  9. Lee, G.H., Lee, J.W. (2011). "Study on behavior characteristics of a pile-type vessel collision protective structure." Journal of the Korea Society of Disaster Informations, Vol.7, No.1, pp.75-85.
  10. Park, J.S. (2012). The Analysis of Ship Collision Behaviors of Offshore Wind Tower with a Bucket Foundation, Master Thesis, National Mokpo Maritime University.
  11. Polyzois, D.J., Raftoyiannis, I.G., Ungkurapinan, N. (2009). "Static and dynamic characteristics of multi-cell jointed GFRP wind turbine towers." Composite Structures, Vol.90, pp.34-42. https://doi.org/10.1016/j.compstruct.2009.01.005
  12. Simula (2010). ABAQUS 6.10 User Manual.